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Abstract

We present new cosmic microwave background (CMB)

anisotropy results from the combined analysis of the

three 
ights of the �rst Medium Scale Anisotropy

Measurement (MSAM1). This balloon-borne bolo-

metric instrument measured about 10 square degrees

of sky at half-degree resolution in 4 frequency bands

from 5.2 cm�1 to 20 cm�1 with a high signal-to-noise

ratio. Here we present an overview of our analysis

methods, compare the results from the three 
ights,

derive new constraints on the CMB power spectrum

from the combined data and reduce the data to total

power Wiener-�ltered maps of the CMB. A key fea-

ture of this new analysis is a determination of the am-

plitude of CMB 
uctuations at ` � 400. The analysis

technique is described in a companion paper (Knox

1999).
Subject headings: balloons | cosmic microwave back-

ground | cosmology: observations | infrared: ISM: con-

tinuum

1. Introduction

TheMedium Scale AnisotropyMeasurement (MSAM)

is a balloon-borne telescope and bolometric radiome-

ter designed to measure the anisotropy in the cos-
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mic microwave background (CMB) at angular scales

near 0:Æ5. The �rst two 
ights of MSAM1, reported

in (Cheng et al. 1994) (MSAM92) and (Cheng et al.

1996) (MSAM94), observed overlapping �elds on the

sky and demonstrated the repeatability of the mea-

surement. A detailed comparison, showing consis-

tency between these two 
ights, was reported in (In-

man et al. 1997) and (Knox et al. 1998). A

third 
ight (Cheng et al. 1997) (MSAM95) mea-

sured a nearby region of sky using the same ob-

serving method. This increased the experimental

sky coverage and sensitivity to the CMB anisotropy

power spectrum. A second version of this instrument

(MSAM II) with complementary frequency coverage

has since been 
own. This data set is still being ana-

lyzed.

2. Instrument and Observations

The MSAM1 instrument is described in (Fixsen

et al. 1996). We give a summary here. The ac-

tively pointed gondola is composed of a 1.4 m o�-

axis Cassegrain telescope with a multimode bolo-

metric radiometer. A three-position chopping sec-

ondary throws the frequency independent �0:Æ5 pri-

mary beam �0:Æ7 tangent to the local horizon at

2 Hz. The four spectral channels at 5.7, 9.3, 16.5,

and 22.5 cm�1, each have bandwidth of � 1:5 cm�1.

The detectors' outputs are synchronously sampled at

32 Hz: 4 times for each of 4 positions of the sec-

ondary mirror, for a total of 16 samples per chop-

per cycle. Telescope pointing is controlled with a

star camera and gyroscope. The con�guration of the

gondola superstructure was changed between the 92

and 94 
ights to reduce possible re
ection of ground

radiation. The improved con�guration remained for

MSAM95.

All three 
ights were launched from the National

Scienti�c Balloon Facility in Palestine, Texas. The

observing method, also described in (Fixsen et al.

1996), is a slow azimuth scan of a region crossing the

meridian above the North Celestial Pole. For a period

of 20 minutes the scan center tracks a �xed spot on the

sky as the earth rotates. Afterwards, an overlapping

region is scanned. MSAM92 and MSAM94 observed

at declination Æ = +82:Æ0, MSAM95 at Æ = +80:Æ5.

The 
ights observed between right ascensions 14:h2

and 19:h5. The lower declination of the MSAM95 re-

quired a faster scan rate because of the increased sky

motion. The sky coverage of all the MSAM1 
ights
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is shown in Fig. 1.

Fig. 1.| Locations in the data �le (
at) sky coordinates
for the 1010 MSAM1 points. The boxes show the relative
twist of the beam-pattern during the observation. The
upper row of points come from the overlapping 
ights,
two years apart, of MSAM92 and MSAM94. The lower
row are the MSAM95 points.

3. Data Reduction

The data from each of the three 
ights of MSAM1

are independently reduced in the same manner. A

detailed discussion of the analysis for each of the three


ights is available in (Cheng et al. 1994, Cheng et al.

1996, Cheng et al. 1997) respectively. We outline the

process here.

1) Spikes caused by cosmic rays are removed from

the time stream by a �ltering and peak detecting tech-

nique which results in the deletion of 5% to 10% of

the data. Samples are also lost due to spurious electri-

cal pickup and telemetry dropouts. For each of these

cuts, a full chopper cycle is deleted. The total loss is

between 10 and 30% of the raw data.

2) The detector time streams are demodulated in

two ways { each resulting in an independent instru-

mental beam pattern and corresponding instrumen-

tal window function. If TL, TC , and TR are the

sky temperature at the left, center, and right posi-

tion of the beam during a chopper cycle, the single

di�erence demodulation is TR � TL, making an an-

tisymmetric beam pattern, while the double di�er-

ence is TC � (TL+TR)=2, making a symmetric beam-

pattern. Optimum weighting for the demodulations

are determined from Jupiter observations. The in-

strument noise is uncorrelated between between the

two demodulations.

3) The data are calibrated using scan and raster

observations of Jupiter. The brightness temperature

of Jupiter is reported in (Goldin et al. 1997). Of

the two models presented in that paper, we use the

temperatures based on the \Rudy" model (Rudy et al.

1987). The error in the calibration is estimated to

be 5%, dominated by the uncertainty in the Jupiter

temperature.

4) The Jupiter raster observations, performed dur-

ing each 
ight, are the basis for the high �delity de-

termination of the beam pattern for each demodula-

tion. Beam-pattern uncertainties are dominated by

arcminute-scale pointing uncertainties.

5) The estimate of the instrument noise is deter-

mined from the variance in 100 s segments of the de-

modulated data after the removal of a slowly drifting

o�set. The o�set ranges from 1 to 6 mK in MSAM94

and MSAM95 with an o�set of 10 mK R-J in all chan-

nels in MSAM92. The drift in the o�set is small com-

pared to its value. Because the removal of the o�set

correlates the noise on time scales longer than the

detector time constant, the remainder of the data re-

duction incorporates the full noise covariance matrix.

6) The data are binned according to both the

position on the sky and the twist of the demodu-

lated beam pattern during each complete chopper cy-

cle. The bin size for the twist dimension is deter-

mined by de�ning a \Binning Degradation Factor,"

BDF =
p
�2 + hÆ2i=� where � is the estimated in-

strument noise and

Æ2
�
=
R �

jB1(~k)�B2(A~k)j2Ccdm(~k)
�
d~k is an esti-

mate of the expected error in the estimate of the sig-

nal due to the twist bin size.


Æ2
�
is determined us-

ing the standard cold dark matter correlation function

Ccdm(~k) convolved with beam-patterns, Bi(~k) twisted

with respect to each other by the rotation matrix A.

A similar construction is used to de�ne the BDF for

the spatial binning. The BDF can be thought of as

the factor by which the sensitivity of the data set is

decreased due to the choice of bin size. The bin sizes

are chosen to hold the BDF to values less than 1.1.

This results in 5Ætwist bins and 140bins in sky posi-

tion.

7) The calibrated data are analyzed to provide

measurements of brightness in the four spectral chan-

nels as a function of bin. The linear combination of

the spectral channels which minimizes the sensitivity

of galactic dust foreground and matches the signature

of a CMB thermal 
uctuation over the spectral range

of the instrument channels is found and an estimate of
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CMB anisotropy and dust optical depth for each bin

is produced. This is done by �tting the data for each

bin in the four channels to a two parameter model of

sky and dust.

4. Comparison of MSAM92 and MSAM94

The overlapping regions of MSAM92 and MSAM94

(see Fig. 1) are used to compare their estimated sky

signals. This can place a limit on how much of the

signal could be attributed to instrumental artifacts or

other local contamination. While straightforward in

principle, a simple comparison is not possible despite

the large degree of overlap. The beam centers for each

sample do not line up perfectly and because of the

twist dimension in the binning, there are few bins that

are populated in both 
ights. In (Inman et al. 1997)

the bin size was expanded over the criterion in the

previous section and those bins with suÆcient data

were di�erenced. With rather reduced sky coverage,

(Inman et al. 1997) found no signal in the di�erenced

data.

An alternative procedure for comparing the two

measurements has been previously reported in (Knox

et al. 1998). Here, an assumed power spectrum for

the CMB 
uctuations is used to make a prediction of

the most likely signal in the 1992 data set, given the

1992 pointing information. This is compared to the

most likely value of the signal in the same 1992 data

set but given the 1994 pointings. This \most likely"

signal is determined by applying a Wiener �lter to the

data. See (Knox et al. 1998) for details. In Fig. 2 we

see that the two data sets predict very similar signals

for the 1992 data set using either the 1992 or 1994

data.

We quantify \very similar" by use of the likelihood

ratio statistic. The two hypotheses are 1) the sig-

nals are correlated as one would expect (given the two

sampling strategies and an assumed power spectrum)

and 2) the signals are uncorrelated between data sets.

We use the natural log of the likelihood ratio statistic,

which is a quadratic operator on the data denoted by

� 1. For the 1992 and 1994 data sets (Knox et al.

1998) has found � = 12:8, which means that hypoth-

esis 1 is e12:8 times more likely than hypothesis 2. A

frequentist interpretation of � is given by calculat-

ing the expected mean and standard deviation of the

statistic under the di�erent hypotheses. The result is

1Also see (Tegmark 1998) on the optimization of quadratic com-

parison statistics.

Fig. 2.| Most likely signal in 1992 data set, given the
COBE-normalized standard CDM power spectrum and
the 1992 data (vertical lines) or the 1994 data (horizon-
tal lines). The shaded area is the 68% con�dence region.
Single-di�erence (or \2-beam") data in top panel, double-
di�erence (or \3-beam") in the bottom panel.

15:0�4:1 (hypothesis 1) and �58:4�27:4 (hypothesis

2). This analysis is in agreement with (Inman et al.

1997) that it is extremely unlikely that the data sets

are caused by a signal that is uncorrelated between

experiments. Based on these analyses, we conclude

that the signal comes from the sky and not from the

instrument or local environment.

5. Likelihood Analysis

The data set from the three 
ights of MSAM has

been reduced to 505 measurements of the CMB sky,

for each of the two demodulations. We model this

data, d as due to signal and noise

di = si + ni (1)

where i runs from 1 to 505 over the single-di�erence

demodulation and from 506 to 1010 over the double-

di�erence demodulation, and the signal, s, is related

to the true temperature �eld, T , by

si =

Z



B(~x� ~xi)T (~x)d~x: (2)

Here, B(~x) is the (single or double di�erence) beammap,

and ~xi speci�es the pointing. We assume that both

the signal and noise are Gaussian-distributed with

3



zero mean with covariance matrices which we denote

by Sij = hsisji and Nij = hninji.
The noise covariance matrix, N , is block-diagonal

with each block representing the noise correlations of

a single demodulation from a single 
ight. The noise

covariance matrix is singular due to the independent

o�set removals from each of the three 
ights (two each

in MSAM92 and MSAM94). This constraint must be

explicitly projected out of the data which we do with

an SVD inversion of N .

The signal covariance matrix is linearly related to

the angular power spectrum of the temperature �eld,

Cl. The likelihood of this power spectrum, given the

data, noise matrix and our assumptions of Gaussian-

ity is

L(Cl) =
e�

1
2
~dC�1 ~dT

(2�)N=2
p
detC

(3)

where ~d is the n-element vector of observations and

C = [S(Cl) + N ] is the (n � n) covariance matrix

of the observations. We use this likelihood to place

limits on the power spectrum of 
uctuations.

For this analysis we parameterize the theoretical

signal covariance matrix, S, with the power spectrum,

Cl � l(l+1)Cl=(2�), broken into bands denoted by B

so that

Cl =
X
B

�
B(l)

CB ; (4)

where CB denotes is a 
at power spectrum within

band B with amplitude CB . That is,

CB =
l(l+ 1)

2�
CB : (5)

The sum runs over the bands in l-space with

�
B(l)

=

�
1 : l<(B) < l < l>(B)

0 : otherwise
(6)

This parameterization of Cl is completely general and
its usefulness will become apparent below.

The calculation of the likelihood requires the inver-

sion of the (n � n) covariance matrix C. It has been

shown in (Bond 1994, Tegmark, Taylor, and Heavens

1996, Bunn and White 1997, Bond and Ja�e 1997)

that a substantial reduction in the rank of C can be

achieved by working in the signal-to-noise eigenmode

basis. This is true even in a high signal-to-noise case

like that of MSAM1. For this data set, we achieve

a compression by a factor of 1.8 in the rank of C by

ignoring modes with signal-to-noise ratio of less than

0.03. Working in the signal-to-noise eigenmode ba-

sis has the added bene�t of automatically projecting

out the eigenmodes associated with the o�set removal.

Thus, only one initial SVD of the covariance matrix is

required (to zero the in�nite eigenvalues). Inversions

of the covariance matrix in the signal-to-noise eigen-

mode basis are then done using faster methods such

as Cholesky decomposition.

6. The Flat Band-Power

As has been done previously for each of the data

sets individually (Cheng et al. 1994, Cheng et al.

1996, Cheng et al. 1997), we calculate \
at band-

powers" for each demodulation. That is, we as-

sume the entire power spectrum is 
at with amplitude

Cl = CB and calculate the likelihood of this amplitude.

Table 1 gives the 
at band-powers (maximum likeli-

hood values of
p
CB) for the three 
ights of MSAM1

for the single and double di�erence demodulations.

The error bars indicate where the likelihood falls to

e�1=2 of the maximum.

Flight Single Di�. Double Di�.

MSAM92 48� 11 54� 10

MSAM94 35� 6 45� 9

MSAM95 51� 7 56� 7

all three 47� 5 53� 5

Table 1: Flat Band-power Estimates for MSAM1 in

�K

7. Radical Compression

Flat band-powers, together with the diagonal parts

of the window function matrix, often simply called the

window function, have traditionally been the main

results of CMB experiments. When taken together,

they are the raw ingredients for constraining the

power spectrum and cosmological parameters.

The parameters, ap, are found by minimizing the

�2 where

�2 =
X
B

(
X
l

fBlCl(ap)� CB)2=�2B ; (7)

where B runs over di�erent data sets, CB and �B
are the band-powers and their standard errors respec-

tively, and fBl is a �lter which, when summed over

the power spectrum, Cl, gives the theoretical predic-
tion for the band-power, CB . The �lter is usually

4



constructed from the familiar window function, WBl

fBl =
WBl=l

(
P

WBl=l)
: (8)

We call the �lter given by this equation the window

function �lter. The parameters ap could be cosmolog-

ical parameters (e.g., 
b, 
�, H0, etc.) or parameters

from a phenomenological power spectrum.

7.1. Problems With Flat Band Powers ...

Using 
at band-powers as a form of radical com-

pression has the following drawbacks:

1. The actual sky power spectrum is not 
at.

2. The expectation value of the band power is not

given by summing the window function �lter

over the power spectrum, and thus the window

function �lter should not be used in Eq. 7. The

expectation value is only given by this sum in

the limit that the data points have no signal

correlations.

3. The method provides no estimate of the corre-

lation between the errors in the estimates of CB
from di�erent demodulations.

4. The constraints on the parameters are not Gaus-

sian, even though this assumption is implicit in

the �2 minimization.

Problems 1 and 3 are well known de�ciencies of

the bandpower approach. Problem 4 has been em-

phasized in (Bond, Ja�e, and Knox 1998b), where

an approximate solution was given. Here we focus

on problem 2, which has been discussed previously in

(Bond, Ja�e, and Knox 1998a). We illustrate the po-

tential severity of the problem with an extreme exam-

ple. Consider a total power mapping experiment with

angular resolution of FWHM = 300 which has mea-

sured a 5Æ�5Æ patch of the sky. The window function

�lter for this experiment is fl /Wl=l = exp(�l2�2b )=l
where �b ' FWHM=2:355. Note that this �lter peaks

at l = 0 indicating that the experiment is most sensi-

tive to 
ucutations on very large angular scales. How-

ever, the data set is not actually sensitive to the lowest

spatial frequencies at all. The problem lies in having

ignored the o�-diagonal terms. The �lter function ac-

tually makes sense only if the data points are all far

apart on the sky so that Sij is diagonal. For the exam-

ple given, correlations between the points on the sky

are making the data set insensitive to 
uctuations on

large scales. Because using the diagonal component of

the window function to de�ne the �lter ignores these

correlations, we get a nonsensical result. For most

actual data sets, the problem is not quite so severe

but this example illustrates the potential pitfall.

7.2. ... and Solutions

Solutions have been found to all of these problems

(Bond, Ja�e, and Knox 1998a, Bond, Ja�e, and Knox

1998b, Knox 1999). Here we brie
y review them.

Problem 1 can be solved by breaking the power

spectrum into several bands as in Eq. 4, and then

�nding the amplitudes of these bands, CB , that max-
imize the likelihood. We �nd this maximum by it-

erative application of a quadratic estimator, as has

been done for COBE/DMR (Bennett et al. 1996) and

Saskatoon (Netter�eld et al. 1997) data in (Bond,

Ja�e, and Knox 1998a) and on simulated MAP data

in (Oh, Spergel, and Hinshaw 1999). By calculating

the covariance matrix of the set of CB we also solve

problem 3.

Because physical power spectra are not actually


at across these bands, we need a means of taking

a general power spectrum, Cl, and turning it into a

prediction for CB . In other words, we need to be able

to calculate the expectation value of CB , hCBi, under
the assumption that the power spectrum is Cl. This

relationship is speci�ed by the �lter function,

hCBi = fBlCl: (9)

Taking Eq. 9 as the de�nition of the �lter, (Knox

1999) has shown how it can be calculated from the

signal and noise covariance matrices and the deriva-

tives of S with respect to Cl. Taking into account

all o�-diagonal terms, this prescription for fBl solves

problem 2. To distinguish it from the usual practice

of simply using the window function �lter, we call this

the minimum-variance �lter. They are identical only

in the limit of no signal correlations.

We could remove the need for �lters by making the

bands very narrow since suÆciently narrow bands en-

sure that the sensitivity to each Cl within the band is

approximately independent of l. However, making the

bands too narrow would increase the non-Gaussianity

{ exasperating problem 4 - because the likelihood of

more tightly constrained broad bands is better ap-

proximated by a Gaussian. Therefore, the bands must

be broad enough to have signi�cant constraints on
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their amplitudes. For MSAM, this condition makes

the bands suÆciently broad that the sensitivity to Cl
varies signi�cantly across the bands, necessitating the

use of a separate �lter for each band.

Finally, if we adopt the (Bond, Ja�e, and Knox

1998a) prescription for problem 4, which requires cal-

culation of a \log-normal o�set", xB , for each CB, we
have solutions to all four problems. Although these

solutions are not exact, they do represent a signi�cant

improvement over the usual 
at band-power method.

It is not necessary to break the power spectrum

into bands to obtain parameter estimates from the

observations. However, this approach aids the com-

parison of di�erent experiments with a minimum of

theoretical assumptions, as well as easing the compar-

ison of experimental results with theory. By following

the above procedure for power spectrum estimation,

the full weight of an experiment is made available in

an easily-tractable form for the kind of parameter es-

timation outlined in Eq. 7

7.3. The Application to MSAM I Data

The MSAM1 data sets are a prime example of

the limitations of the 
at band-power method. The

MSAM1 data have high signal-to-noise and are heav-

ily sample-variance limited when using standard esti-

mators of the 
at band-power. We now use the radical

compression methods outlined above to probe regions

of l-space ignored by our previous reduction to 
at

band-powers.

The di�erence between the minimum-variance �l-

ters, fBl, and the window function �lters, is shown in

Fig. 3. The plot shows the �lters for each demodula-

tion of the 3 year data for a single band covering all l.

Notice that the minimum-variance �lters show more

response at high l than the window function �lters.

This is due to the fact that the dense sampling and

high signal-to-noise ratio of the data set yield infor-

mation on angular scales smaller than the beam size.

Again, this information is in the o�-diagonal com-

ponents of the covariance matrix - underscoring the

need for experiments to track the full noise covariance

matrix in the data reduction.

We plot the minimum-variance �lters for the in-

dividual demodulations only to make the point that

they are not equal to the window-function �lter as has

often been assumed in the past. In the analysis we

describe below, we do not treat the double-di�erence

data sets and single-di�erence data sets separately;

Fig. 3.| The minimum-variance �lters (solid lines) and
window function �lters (dashed lines) for the single and
double di�erence demodulations.

the very signi�cant correlations between them are in-

cluded.

For this analysis, we break up the `-space coverage

into three wide bands and allow CB to vary in each.

In line with the discussion above, we choose the three

bands such that each has enough weight to produce

an interesting constraint on the power spectrum. The

l-ranges for the three bands chosen are 39-130, 131-

283, and 284-806.

In Fig. 4 we plot the 3 power spectrum estimates,

ĈB from the combined three years of data. The cen-

tral points are located in l-space at le� which we de-

�ne as the average value of l over the �lter function

for that band. We include a horizontal bar from l� to

l+. For the middle band, these are taken to be simply

the beginning and end of the band (l� = l< = 131,

l+ = l> = 283). For the far ends of the two outer

bands, we take them to be where the �lter falls to

e�1=2 of maximum. Similar results (dashed lines) are

achieved by analyzing a total-power map of the CMB

temperature which is constructed from the demod-

ulated data. We take the good agreement between

these two nearly independent analysis techniques as

strong proof that we have calculated the complicated

signal covariances correctly. We will discuss this pro-

cedure in section 8.

While the ĈB are not independent, their correlation

coeÆcients are fairly small. The correlation between

bands 1 and 2 is �0:18, between bands 1 and 3 is
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Fig. 4.| The MSAM band-power estimates. The
solid lines give the estimates of the power in the three
bands calculated directly from the demodulated data,
and recorded in Table 2. Similar results (dashed lines)
are achieved by analyzing a total-power map of the
CMB temperature which is constructed from the de-
modulated data (see section 8).

Table 2: Power Spectrum Estimates from MSAM1

l� le� l+
p
ĈB (�K)

39 84 130 35+15
�11

131 201 283 49+10
�8

284 407 453 47+7
�6

�0:024 and between bands 2 and 3 is �0:29. The

error bars shown in Fig. 4 are the result of marginal-

izing over the power in the other bands. Under the

assumption that the other bands are �xed, the error

on the band in question is less than 5 % smaller.

The power spectrum estimates, ĈB , their weight

matrix, Fll0 , �lter functions, fBl, as well as log-normal

o�sets, xB (see (Knox 1999)) are available at

http://topweb.gsfc.nasa.gov and also at

http://www.cita.utoronto.ca/ knox/radical.html which

includes similar information from other CMB anisotropy

data sets.

8. CMB Maps

A useful check of our power spectrum results can be

made by analyzing a map made from the demodulated

data as opposed to directly from the demodulated

data as we have done above. We begin constructing

this map by recognizing that Eq. 1 and 2 can be

combined and rewritten in matrix form as

d = BT + n: (10)

With the assumption that the noise is Gaussian, with

covariance matrix,N , the most likely value of T , given

the data, d, is that which minimizes the �2:

�2 � (d�BT )N�1(d�BT ): (11)

This minimum, which we denote by T̂ , is given by

T̂ = ~NBN�1d: (12)

This estimate of T will be distributed around the true

value due to noise, where the noise covariance matrix

is

~N �< (T̂ � T )(T̂ � T ) >=
�
BTN�1B

�
�1

: (13)

This map can be analyzed in the same manner as

the demodulated data, with the advantage that the

signal covariance matrix is now very simple to com-

pute. Previously, calculating the signal covariance

matrix required doing a four-dimensional integral for

every covariance element. In this new \map basis,"

the signal covariance matrix simpli�es to

< TiTj >=
X
l

2l + 1

4�
Pl(cos(�ij))Cl: (14)

The price to pay for this simplicity is that the noise

covariance, ~N , is very complicated. We have done this
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analysis as a check of the calculations in section 7.2.

The results are shown in Fig. 4. The agreement is a

strong argument that we have made no errors in what

is a fairly elaborate and diÆcult calculation.

The map, T̂ , is extremely noisy and not visually

useful. We can greatly reduce the noise by Wiener �l-

tering, (e.g.,Bunn, Ho�man, and Silk 1995, Tegmark

et al. 1997, Knox et al. 1998). The Wiener �lter

produces the most likely T , given not only the data,

but also an assumed power spectrum for the signal.

The Wiener �ltered maps are shown in Fig. 5.

Fig. 5.| A map of the three years of data. Top region

was covered by the 92/94 
ight; bottom by 95 
ight.

9. Discussion

Because the third band is derived by making mea-

surements on scales on order of the beam size, we

must ask what sensitivity the amplitude of ĈB has to

the beam shape. For example, if the band sensitivity

results from high frequency 
uctuations in the mea-

surements of the various Bi(~k), the estimation of the

amplitude of CB would be suspect to the errors in de-

termining the beammap. We address this question by

performing a number of analyses of the three years of

data. The �rst analysis (leading to the quoted val-

ues of ĈB here) is done using the six beammaps mea-

sured in the three 
ights. That is, MSAM92 data

goes with the MSAM92 beammaps, MSAM94 data

with MSAM94 beammaps, and MSAM95 data with

MSAM95 beammaps. The second analysis is done

using the beammaps measured during the MSAM92


ight for all three years of data. This is followed

by repeating the analysis with the beammaps from

MSAM95 2. We �nd that after accounting for the

normalizations of the di�erent data sets, there is no

evidence for the third band being sensitive to the

beammap choice.

Reanalyzing the entire data set using beammaps

measured in 
ight from raster observations of Jupiter

for each of the three di�erent years the experiment


ew, is taken to be the most pessimistic estimator of

the e�ect of the beam on the third band. The di�er-

ences between the beammaps include all the statisti-

cal errors of the beammaps, any errors in the raster

observations themselves, and any changes introduced

by the complete rebuild, realignment, and refocusing

of the optical system and instrument con�guration.

To place our estimates of the power spectrum in

context, we plot them with the predictions of several

theoretical models as well as a �t of the power in 11

bands to all available data (based on (Bond, Ja�e,

and Knox 1998b) including the previously published

MSAM1 points.

Fig. 6.| The dark error bars are the power spectrum
constraints from the 3 year MSAM data set. The
light error bars are the result of a �t of the power
in 11 bands to all available data (based on (Bond,
Ja�e, and Knox 1998b) including the previously pub-
lished MSAM1 points. The curves are standard CDM
(solid), a 
at Lambda model (dotted), and an open
model with 
curvature = 0:6 (dashed).

2The MSAM92 and MSAM94 beammaps are similar enough to

be swapped with no change in estimated signal.
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10. Summary

We have calculated new power spectrum estimates

from the combined three 
ights of the MSAM1 in-

strument. The analysis technique used is an improve-

ment over the standard 
at band-power aproach and

includes all correlations in the data. In addition to

power-spectrum estimates and their error covariance

matrices we have also provided the log-normal o�-

sets and minimum-variance �lters in order to improve

\radical compression." The analysis yields a strong

constraint on the power spectrum at l � 400, broad-

ening the l-space coverage of the experiment into a

theoretically very interesting region.
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