Lecture 8: Div(ergence)

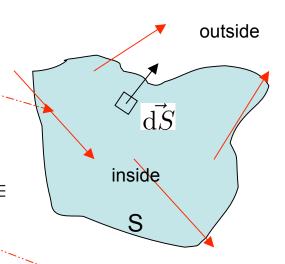
 \bullet Consider vector field \vec{A} and

$$\oint_S \vec{A} \cdot d\vec{S}$$
 over a closed surface \equiv

Flux (c.f. fluid flow of Lecture 6) of \vec{A} out of S

e.g, if \vec{A} is the fluid velocity (in m s⁻¹), $\rho \int \vec{A}. \vec{\mathrm{d}}\vec{S} \equiv$

rate of flow of material (in kg s⁻¹) out of S



- For many vector fields, e.g. *incompressible* fluid velocity fields, constant fields and magnetic fields $\oint \vec{A} \cdot \vec{\mathrm{d}S} = 0$
- ullet But sometimes $\oint ec{A} \cdot ec{\mathrm{d}S}
 eq 0 \,$ and we define div(ergence) for these cases by

$$\operatorname{div} \vec{A} \equiv \lim_{dV \to 0} \frac{\oint \vec{A} \cdot \vec{dS}}{dV}$$

A *scalar* giving flux/unit volume (in s⁻¹) out of $\,\mathrm{d}V$

In Cartesians

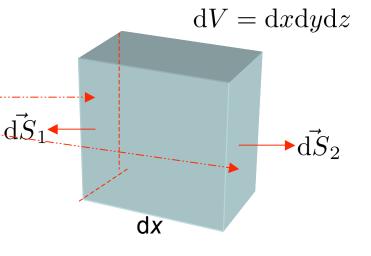
- Consider tiny volume with sides dx, dy, dz so that \vec{A} varies linearly across it
- Consider opposite areas 1 and 2

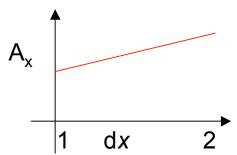
 $\int \vec{A} \cdot \vec{\mathrm{d}S}$ for just these two areas =

$$-A_x|_1\mathrm{d}S + A_x|_2\mathrm{d}S$$

where
$$d\vec{S}_2 = (dS, 0, 0) = (dydz, 0, 0)$$

and $A_x|_2 - A_x|_1 = \frac{\partial A_x}{\partial x} dx$
total flux $= \frac{\partial A_x}{\partial x} . dxdS = \frac{\partial A_x}{\partial x} dV$





• Similar contributions from other pairs of surfaces

$$\Rightarrow \operatorname{div} \vec{A} = \lim_{dV \to 0} \frac{\left(\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}\right) dV}{dV} \Rightarrow$$

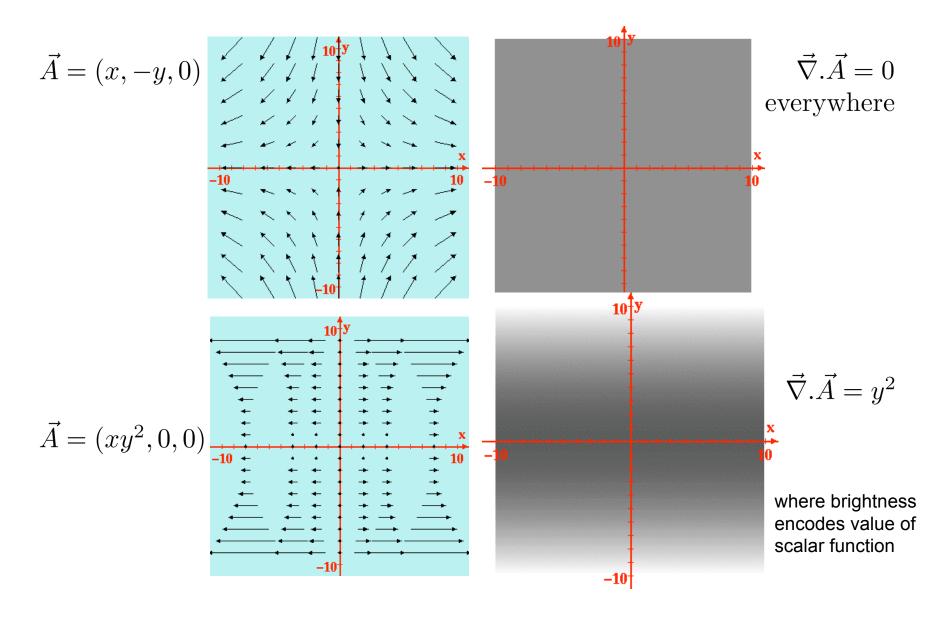
$$\operatorname{div} \vec{A} = \vec{\nabla} \cdot \vec{A}$$

Simple Examples

$$\vec{\nabla} \cdot \vec{r} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \cdot (x, y, z) = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3$$

$$\hat{\nabla}.(y^2z, xy, \sin z) = \\
\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right).(y^2z, xy, \sin z) = \\
\frac{\partial(y^2z)}{\partial x} + \frac{\partial(xy)}{\partial y} + \frac{\partial\sin z}{\partial z} = \\
0 + x + \cos z = x + \cos z$$

Graphical Representation



Physics Examples

• Incompressible (ρ = constant) fluid with velocity field \vec{V}

$$\rho \oint_S \vec{V}. \vec{\mathrm{d}S} = 0 \qquad \text{because for any closed surface as much fluid flows out as flows in}$$

$$\Rightarrow \vec{\nabla} \cdot \vec{V} = 0$$
 everywhere

• Constant field $\oint \vec{A}.\vec{dS} = \vec{A}.\oint \vec{dS} = \vec{A}.\vec{S} = 0$ since for any closed surfac $\vec{S} = (0,0,0)$

 $\mathrm{d}V$

 Compressible (ρ ≠ constant) fluid: ρ can change if material flows out/in of dV

$$ho \vec{V}. \vec{\mathrm{d}S} \equiv \mod \mathrm{d}V$$
 per unit time $\equiv -\frac{\partial}{\partial t} \left[
ho \mathrm{d}V \right]$

$$\Rightarrow -\frac{\partial \rho}{\partial t} = {\rm div}(\rho \vec{V}) = \vec{\nabla} \cdot (\rho \vec{v}) \\ \text{A continuity equation} \text{: "density drops if stuff flows out"}$$

Lines of Force

• Sometimes represent vector fields by lines of force

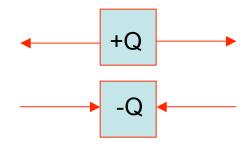
ullet Direction of lines is direction of $ec{A}$

ullet Density of lines measures $|ec{A}|$

• Note that div (\overrightarrow{A}) is the rate of creation of field lines, not whether they are diverging

- If these field lines all *close*, then $\vec{\nabla} \cdot \vec{A} = 0$
- e.g. for magnetic field lines, there are no **magnetic monopoles** that could create field lines $\Rightarrow \vec{\nabla} . \vec{B} = 0$ everywhere
- Electric field lines begin and end on *charges*:
 sources in dV yield positive divergence
 sinks in dV yield negative divergence

 $|\vec{A}|$ larger at 1 than 2



Further Physics Examples

For electric charge continuity equation is $-\frac{\partial}{\partial t} \left[\rho_f dV \right] = \vec{j}.d\vec{S}$

(s⁻¹) charge density (C m⁻³) volume (m³) current density (A m⁻²) surface (m²)

number
$$\rho_f \equiv n_{\rm e}e$$

$${\rm density~(m^{-3})~of}$$

$${\rm charges} \qquad {\rm So} \quad {\rm div}\vec{j} = -\frac{\partial \rho_f}{\partial t}$$

$${\it drift~velocity~field} \quad {\rm charge~of~current~carrier}$$

- "Charge density drops if charges flow out of dV" (continuity equation)
- *Maxwell's Equations* link properties of *particles* (charge) to properties of *fields* \vec{E} and \vec{B}
- In *quantum mechanics*, similar continuity equations emerge from the *Schrödinger Equation* in which ρ becomes the **probability** density of a particle being in a given volume and \vec{j} becomes a *probability current*