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Abstract of “A Search for the Large Angular Scale Polarization of the Cosmic Microwave
Background,” by Brian Keating, Ph.D., Brown University, May 2000

The Cosmic Microwave Background (CMB) is one of the three observational pillars of
modern cosmology, along with the Hubble Expansion Law and the measured abundances
of the light elements. Being the fossil radiation from the Big Bang, it probes the conditions
of the early universe. Three properties are necessary to fully characterize the CMB: its
spectrum, spatial isotropy, and polarization. The first two properties have been measured,
whereas the polarization state of the CMB remains undetected. Detection of, or an im-
proved upper limit on, the polarization of the CMB at large scales holds great promise for
the determination of several fundamental properties of the standard cosmological model,
such as the ionization history of the Universe and the contribution of gravitational waves
to the spectrum of primordial perturbations. Most models predict that the magnitude of
the polarization of the CMB at large angular scales is less than 1uK. This is at least an
order of magnitude below both the large scale anisotropy level of the CMB, as well as
the best existing upper limits on its polarization. In this thesis I calculate the magnitude
of the CMB polarization in various cosmological scenarios, and outline the fundamental
challenges to measuring these signals. Following, I describe the design of the POLAR
(Polarization Observations of Large Angular Regions) experiment, which is the first ded-
icated polarimeter to study the CMB in more than a decade. POLAR is a ground-based,
centimeter-wavelength correlation polarimeter designed to detect the polarization of the
CMB at 28, 31, & 33 GHz. POLAR is the first correlation polarimeter ever used for CMB
work and has the widest bandwidth of any correlation radiometer ever used for investiga-
tions of the CMB. POLAR has been constructed and is currently acquiring data at the
University of Wisconsin — Madison.
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Introduction

The 2.7K Cosmic Microwave Background (CMB) radiation is a vital probe of all modern
cosmological theories. This radiation provides a “snapshot” of the epoch at which radiation
and matter decoupled, approximately 300,000 years after the Big Bang, and carries the
imprint of the ionization history of the universe. This information has been used to tightly
constrain theories of cosmological structure formation, and has ushered in the era when
“cosmological accuracy” is no longer a pejorative term.

The CMB was definitively identified in 1965 by Penzias and Wilson [1]. The three
defining characteristics of this relict radiation are: its spectrum, spatial anisotropy, and
polarization. Since that time, numerous experiments have characterized its spectrum and
spatial anisotropy:

Spectral Measurements

The COBE Far-Infrared Absolute Spectrophotomer (FIRAS) has determined the ther-
modynamic blackbody temperature of the CMB to be 2.72540.002 K [2]. However, since
this instrument probes the CMB over a limited spectral range (v ~ 10 to 600 GHz), to
probe the blackbody nature of the CMB over the widest possible range of frequencies
we must also consult supplemental experimental evidence from lower frequency measure-

ments, see e.g. [3]. These lower frequency measurements do more than simply confirm



the results of FIRAS, they serve to constrain deviations from the Planck spectrum to
(nearly) negligible levels. Most notably, these low-frequency measurements constrain the
so-called “chemical potential” distortion, which results in a decrement of the Planck spec-
trum at low frequencies. Photons, being bosons, have a number density in equilibrium
of n= W The Planck spectrum sets p, = 0, but the existence of a non-zero
Lo can not be ruled-out at present. The best 95% confidence upper-limits suggest that
o] < 4 x 1074 [4].

At frequencies near the peak of the Planck spectrum a Compton-y distortion might
be expected from Compton scattering of photons by electrons heated by a hypothesized
energy release prior to decoupling at a redshift of z ~ 10°. This type of distortion has
a characteristic spectral signature in that the hot electrons increase the frequency of
scattered photons while conserving photon number density. The y-factor parameterizes
the temperature difference between the hot electrons and cooler photons: y = [ drky(T. —
Tomp)/mec?,where T, is the kinetic temperature of the electrons. The result of a Compton-
y distortion is a spectral decrement below the peak frequency of the CMB, and a spectral
increment above the peak. The best upper limits on the Compton-y factor suggest
ly| < 1 x 1075 [5],[6].

Anisotropy Measurements

Large Scale Anisotropy

There are at present a plethora of detections of anisotropy of the CMB, the largest of
which is the dipole anisotropy resulting from the earth’s proper motion with respect to
the nearly isotropic Planckian spectrum mentioned above. This effect is non-cosmological,
so it is never included in models which predict the anisotropy of the CMB. Expanding

the observed temperature pattern on the celestial sphere into spherical harmonics we



have: T%Ib (0,0) = 2 tm @mYem - The first cosmologically significant anisotropy is the

quadrupole, with an expectation value of Cy = T2  (|agm|*) = Tgmb\/% SR ag 2.

The RMS quadrupole is used to normalize the CMB power spectrum. The amplitude of

the power spectrum is defined to be:

15Cy
Qrms - 4_ .

Since the angle subtended on the celestial sphere by a spherical harmonic multipole £
scales as @ ~ 7/{, the quadrupole anisotropy is a large-scale anisotropy ( 8 ~ 90°. The
best limits on Qrus come from the COBE DMR experiment, which at 95% confidence
are 4uK < Qrus < 28ukK, where the relative imprecision is attributed primarily to
contamination by galactic emission [7]. In the angular range 90° < 6 < 10°, the DMR also
provides the most precise measurement of temperature anisotropy. On 10° scales, COBE
detects AT ~ 30uK [8].

Intermediate and Small Scale Anisotropy

There has been an intense effort to measure the anisotropy of the CMB at smaller scales
because the fluctuations on these scales are expected to bear the imprint of microphysical
processes occuring in the early universe prior to and during decoupling. All of these
experiments are either ground or balloon based. We refer the reader to the recent reviews
[7] and [9] for current results.

What About Polarization?

Polarization of the CMB has received comparatively little experimental attention, de-
spite its fundamental nature. The anisotropy and polarization depend on the primordial

power spectrum of fluctuations as well as the ionization history of the universe in different



ways. As | will demonstrate in Chapter 2, a detection of polarization would complement
the detections of anisotropy by facilitating the reconstruction of the initial spectrum of
perturbations as well as the ionization history of the universe.

The magnitude and spatial distribution of polarization is determined by factors such
as: the source of the CMB anisotropy, the density parameter €),, the baryon content
of the universe €1g, the Hubble constant H,, and the ionization history of the universe.
CMB polarization is paticularly sensitive to the ionization history of the universe, which
includes the duration of recombination and the epoch of reionization. The detection of,
or a further constraint on, the polarization of the CMB has the potential to dramatically
enhance our understanding of the pre-galactic evolution of the universe.

Similar to the CMB anisotropy power spectrum, the polarization power spectrum
contains information on all angular scales. Large angular scales (larger than ~ 1°) corre-
spond to regions on the last scattering surface which were larger than the causal horizon
at z ~ 1000. In the absence of reionization, these scales were affected only by the long
wavelength modes of the primordial power spectrum. This region of the anisotropy power
spectrum was measured by the COBE DMR, and establishes the normalization for models
of large scale structure formation. Similarly, measurements of polarization at large angu-
lar scales will normalize the entire polarization power spectrum. Because the anticipated
signal size is small at all angular scales, polarization measurements face more formidable
challenges than anisotropy measurements.

The experiment described in this thesis measures polarization signals on large angular
scales. While these signals may be weaker than signals on small scales, the design of a large
angular scale measurement is comparatively simple and compact, with potentially lower

susceptibility to sources of systematic error. A detection, or improved upper limit, at large



angular scales is a natural first step towards probing the polarization power spectrum on
all angular scales. In this regard, the present state of the polarization field is reminiscent
of the anisotropy field a decade ago.

In this thesis we will review theoretical arguments which suggest that the ratio of
polarization to anisotropy should be in the range 0.1% to 10%, at large angular scales.
The best current upper limits on polarization are comparable to the measured anisotropy
level itself (see Table 1). Measurements of anisotropy, by COBE, and other experiments on
the level of AT /T, ~ 1 x 107° indicate the required level of sensitivity to polarization
must be at least AT /Tim, < 1 X 1076, Thus, to obtain new non-trivial information,
either a positive detection, or an improved upper limit capable of discriminating between
different cosmological scenarios, necessitates extremely precise measurements.

Current detector technology is capable of achieving the required level of sensitivity.
However, in addition to achieving high sensitivity it is essential to discriminate the polar-
ization from systematic effects, such as non-cosmological astrophysical sources of polarized
radiation. Space-based missions, such as MAP[10] and Planck Surveyor [11] will produce
full-sky anisotropy maps, and are expected to achieve the required sensitivity level to
measure polarization as well. The projected sensitivity levels will allow for per-pixel de-
tections of anisotropy with signal-to-noise ratios: SNR > 1. The polarization maps from
these missions, however, are expected to have SNR< 1 for each beam-sized pixel, and will
be of lower resolution than the anisotropy maps. Fortunately, polarization observations
are also possible from the ground; as we will demonstrate, polarized atmospheric emission
is expected to be negligible.

This thesis describes an ongoing, ground-based polarization experiment, Polarization

Observations of Large Angular Regions (POLAR), optimized to measure CMB polariza-



tion at 7° scales, for ~ 36 pixels. The design incorporates many techniques developed for
previous anisotropy and polarization experiments, from the ground, balloons, and space.

In Chapter 2 we review the theory of CMB polarization, which motivates POLAR’s
experimental design. We describe the instrument in Chapter 4, and the calibration of
POLAR in Chapter 5. In Chapter 7 we focus our attention on a significant challenge
to the detection of the polarization of the CMB: the discrimination of CMB polarization
from polarized foreground sources. Chapter 8 presents an overview of our observing strat-
egy, which is designed to minimize the time required to detect a cosmological signal. In
Chapter 9 we present the preliminary analysis of the initial observing run of POLAR.
Chapter 10 summarizes the results obtained to date, along with a formalism for compar-
ing future data sets with temperature anisotropy data, and calculating estimates of the
epoch of reionization. Finally, we speculate on the conclusions which could be drawn from
a detection of CMB polarization, as well as future directions and goals of the POLAR

campaign.

Table 1: Experimental Limits on Linear Polarization (95% Confidence Level)

Reference Frequency (GHz) Sky Coverage Dec=49 Angular Scale Limit ;{CI:L
Penzias & Wilson 1965 [1] 4.0 scattered — 0.1
Caderni et al. 1978 [12] 100—600 near galactic center 0.5° < 6 < 40° | 0.001—-0.01
Nanos 1979 [13] 9.3 § = +40° 15° 6 x 10~
Smoot & Lubin 1979[14] 33 § = 38°,53°,63° 7° 3x 1074
Lubin & Smoot 1981 [15] 33 § = —37° to +63° 7° 6x10°
Partridge et al. 1997 [16] 8.4 40% at § = +43.5° 1 1.1x10°°
Wollack et al. 1993 [17] 26 — 36 ~ 10° Cap around NCP 0.5° 9x10°°
Netterfield et al. 1996 [18] 26 — 46 ~ 10° Cap around NCP 0.5° 6x10°°




Chapter 1

Preliminaries

This chapter is intended to serve as a reference for several chapters in this thesis. The
results quoted here are, in general, not derived, and the intent is simply to compile a small
repository of information which will be quoted throughout this thesis. The reader may

feel free to refer to this chapter only by necessity, or skip it altogether.

1.1 Radio Astronomy Fundamentals

We first summarize some results which outline our observables and their connection to

our measurement technique.

1.2 Radiometry Basics

A radio source observed in direction 6 can be characterized by its Brightness, with units
of [W/m?/Hz/sr]. The brightness, B, (), of a source is related to its detected power in an

area element dA via:

P:/BV(H)COSO dQ dA dv, (1.1)



where d) = sin 0dfd¢, dA, dv are infinitesimal solid angle, area, and frequency ele-
ments, respectively, and 6 is the angle between the normal to the area element and the
line-of-sight.

The source’s Flux Density is defined by:

&:/&@m (1.2)

The unit of S, is the Jansky = Jy = 10726 W/m?/Hz.

For a blackbody, the brightness is a function of thermodynamic temperature 7"
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which has a maximum brightness at a frequency #ase = 58.789(%). The number
density of photons in a blackbody radiation field is 2.03 x 107T3m =3 [19]. At frequencies

much greater than v,,,;, we obtain the Wien Law: B, (T) = Q}é—gse_hy/kT. In the Rayleigh-

Jeans region of the spectrum we have

202
hvy < kT = BRJ(V, T) = —QkT.
C

From this equation we obtain the definition of Brightness Temperature:

2B,

Ty = .
B~ ok2

(1.4)

From the definition of the brightness temperature, which is independent of the receiver,
we obtain the Antenna Temperature which is dependent on the beam of the radio telescope.

The antenna has a peak-value normalized beam pattern, P(6) which results in an acceptance



solid angle of () = fo% P(0)dS2. The main beam is defined as the solid angle, 25, subtended
by the portion of P(6) between its first nulls. This results in a main beam efficiency factor
of mp = QTM Then the antenna temperature is defined to be:

Qum

If a radio source fills the entire beam of a radio telescope and is optically thick!
then we see that the antenna temperature will equal the thermodynamic temperature
of the source. This fact is quite remarkable, for it suggests that if we could couple the
radiation received from this distant source to a blackbody in our lab, the lab blackbody’s
temperature would equal the temperature of the distant source. In this way we can literally
“take the temperature” of extremely distant objects.

One final concept is useful here; that of the antenna’s effective area. A radio telescope
antenna may have zero physical area, as in the case of an ideal dipole antenna, yet it is

defined to have an effective area of:

Ay = nA?, (1.6)

where, n is the number of spatial modes, A is the wavelength of the radiation received
by the antenna, and €, is the main-beam solid angle[20][19]. For (diffraction-limited)
measurements, n = 1 and A.Q = \2 = 52; The product A. s is, in astronomical circles,
known as the throughput or efendue. The concept of antenna temperature is useful since

it implies a source of flux density S, will produce an antenna temperature of:

"Meaning that it is in bulk thermal equilibrium if it is a diffuse source, such as a cloud, and has an
emissivity of unity.
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which is consistent with the conventional relationship between flux and area.

1.3 Emission and Absorption of Radiation by Matter

Here we present a brief, phenomenological, description of emission and absorption as it
pertains to objects frequently observed in radio astronomical applications [20].

Emission

We first consider an emitting medium, with number density of emitting particles p,
and emission coefficient j, (which is the energy emitted by a volume element dV' = drd A
in the intervals dv, dS, dt), which produces an infinitesimal brightness:

1
dB, = Ej,,pdre#, (1.8)

per unit thickness of the medium, dr. The optical depth, T, is defined to be:

R
7':/ apdr,
0

where ap is known as the absorption coefficient, with units of m—!, and 7 is optical depth
which is dimensionless.

Absorption

Now consider a collimated beam of radiation traveling a distance dr through an ab-
sorbing medium. The brightness of the radiation after traversing a distance R through

the medium is related to the initial brightness, B, by:
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R
B = Bye Jo i — g e, (1.9)

Combining both emission and absorption by a medium, we have that:

_ Jv _
B,=Bse "+ —(1—-¢€¢"). 1.10
T A eT) (1.10)

Kirchoff’s Law states that, in equilibrium, we have:

dB =0
v

—~B= (1.11)
yixe’

which relates brightness of an emitting and absorbing cloud to its bulk properties in

thermodynamic equilibrium.

Absorption and Scattering: Extinction

The Boltzmann equation gives the relation between the input and output intensities of a
collimated beam of radiation traveling an infinitesimal distance dr through an absorbing,

emitting medium:

dB,
dr

= —k,By + ju, (1.12)

where the emission coefficient, j,, is the energy emitted by a volume element dV =
ds dA in the intervals dv,d(),dt, and k,B, is the energy absorbed from a beam of specific

intensity B, .
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Extinction, denoted by Q., is the combination of absorption and scattering out of
a collimated beam. Extinction is parameterized by Q. = 3—’;, where s, is the optical
scattering cross-section, and o4 is the geometric cross section of the scatterer. Q. varies
with index of refraction of the scatterer, approaching unity as the wavelength decreases to

zero, and can become > 1 at wavelengths comparable to the dimension of the scatterer.

1.4 Thomson Scattering, Polarization, and the Stokes Pa-

rameters

The description of polarized radiation appears quite frequently in this thesis, both in the
theoretical description of polarization of the CMB, and the experimental description of its
detection. We choose to present a unified discussion prior to embarking on either course.

We start by considering a generally polarized? electromagnetic wave with angular

frequency, w:

E = Eyosin(wt — 8,)§ + Egosin(wt — §,)%. (1.13)

The polarization state of the wave is completely characterized by the Stokes parame-

ters: 1,Q,U, and V.

L, = (Ej) (1.14)
I, = (E%) (1.15)

2j.e., either circularly or linearly (or both)
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I = I,+1, (1.16)

Q - Iy - Iac (1]7)
U = 2E,E;cos(dy —dy) (1.18)
V = 2Ey0E;0sin(dy — dz). (1.19)

Physically, I is the total intensity of the radiation, and is always positive. The param-
eters @ and U quantify the linear polarization of the wave, and V quantifies the degree
of circular polarization (when V' = 0, the radiation is linearly polarized or unpolarized).
[ = Y@Xu2iv?

= T

The level of polarization is defined as , and the polarized intensity is

I =1 x 1.

Note that the Stokes parameters are defined in intensity = brightness units, whereas
our experiment measures the antenna temperature of the incident radiation field. If we
need to convert between the two we apply equations 1.4 and 1.5.

We now turn from the phenomenological description of polarization to its generation
via photon-electron scattering. Thomson scattering is the low-energy limit of Compton
scattering, differing due to the fact that a Thomson-scattered photon will have the same
frequency before and after scattering. We will only discuss scattering of photons by
electrons, not other charged particles.

The differential scattering cross-section for Thomson scattering gives the intensity of
radiation scattered into solid angle df) :

d 3
0-7 or A/-€’2

- _ =4 1.
dQ) 8 € ’ (1.20)

where op is the Thomson cross-section with units of m2, and the vectors € and ¢
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represent the incoming and outgoing polarizations, respectively. The Thomson cross-
section o7 o< r2, where 7, is the classical electron radius. We refer the reader to figure 1.1

for definitions of coordinates used in the scattering problem.

Figure 1.1: Thomson Scattering Geometry

Following Kosowsky [21], we consider an incident unpolarized plane wave of intensity I’
which is subsequently scattered along the z-axis. From the scattering cross-section defined

above we find that the Stokes parameters of the outgoing radiation are:

I = ?;;’—WTI’(HCOSM) (1.21)
3

Q = %I’sir@@ (1.22)

U = o, (1.23)
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where 6 is the scattering angle. To determine the net polarization produced by an
incident distribution I’(6, ¢), we must integrate the above equations over all incoming and

outgoing angles. We find, as expected, that there will now be a non-vanishing U:

BUT Y 2

167r/dQI )(1 + cos” 0)

3

o /dQ I'(6, ¢) sin? 0 cos 2¢ (1.24)

3
il /dQ ' 51112 0 sin 2¢.
" 16w

At this point, it is customary to expand I’(6, ¢) into spherical harmonics, viz:

(6 d)) = Zaf,m}/ﬁ,m(ead))' (125)

By the orthogonality of the spherical harmonics, we find from equations 1.24 and 1.25

that the resulting polarization is:

3or [m
= ——/= 1.26
Q=31 zm2 (1.26)

30T
— 1.27
8T 5 #2,-2; (1.27)

which shows that it is the quadrupole content of the incident radiation field which

determines the polarization produced.
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1.5 Time and Frequency-Domain Relations

Both of the following subsections draw heavily from the excellent discussion given in Mc
Donough and Whalen [22]. Results from these sections are used heavily throughout this
thesis in many seemingly disparate discussions. A thorough understanding is required in

order to connect the predictions of theory to the experimental observables.

1.5.1 Autocorrelation Function: ACF

We begin by considering a timestream, representing the voltage out of a detector, denoted
by z(t). The expectation value of z(t) is: E[x(t)] = [°% x(t)p[x¢]dx¢, where p[z,] is the
probability that z(t) = x4 at time t.

Then the auto-correlation function (ACF) of z(t) is defined to be:

Ra(t1,t2) = E[x(t1)(x(t2)] (1.28)

o0
= / x1x2p(21, T2; t1, ta)dx1dws. (1.29)

—00

If the process which generates the timestream is a stationary random process then
E[x(t)] = m, the mean is a constant, as is the variance o2. In this case we can disregard
the absolute times ¢ and t2 in equation 1.29 and consider instead only the time difference
between them, denoted by 7.

Then equation 1.29 becomes:

o0

Ry(t1,t1 — 1) = / z(t1)x(tr — 7)plx(ts), z(t1 — 7)]dzy day,—» = Ry (7). (1.30)

—00
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If R.(t1,t2) = Ry(t1 — t2) then the process is called wide-sense stationary. These

definitions result in:

02 = R,(0) —m>. (1.31)

Ra(r) = Jim () /T/ " a(t)a(t — 7). (1.32)

Note that from the definition of the ACF, R,(7) = R,(—7). Similar definitions hold
for the cross-correlation function (= Rgy) of two timestreams z(t) and y(t), though we
will not present these generalizations of equation 1.30 here.

We wish to emphasize here that, although we have been dealing in the time-domain,
these results immediately generalize, for example, to functions of angle. As a toy example,
let z(@) be a scalar function of angle, on a small-enough portion of the sky which can

essentially be treated as planar, or in this case, one-dimensional. Continuing with the toy

example, let z(0) = cos kO, then the ACF of z(0) is:

Ro(6,0 — 7) = Ru(7) — %cos(km’). (1.33)

We see that a sinusoidal function on the sky produces a sinusoidal correlation function.
This generic result will be useful when we discuss the auto and cross-correlation functions
of cosmological observables, in Chapter 2, which are often assumed to be described by

Gaussian random fields.
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1.5.2 Frequency Domain Relations

A timestream xz(t) has a Fourier Transform:

X (iw) = / T a(t)e gy (1.34)

—0o0
as long as [0 |z(t)|dt < co. Of course this inequality does not hold for a timestream

representing a physical process, such as the output from our detectors. Instead we relax

this more-strict criterion, and instead require:

1 T/2

lim (= / z(t)]2dt < 0o
() /., L) ,

which can usually be satisfied. In this case, we see that z(t)/v/T has a Fourier trans-
form denoted by X(v,dv), since in the limit that T — oo, we obtain an infinitesimal
vdv. Usually, we are interested in the infinitesimal power contained in an infinitesimal

frequency band, dv. This becomes:

S, (v)dv = E[|X(v,dv)|?]. (1.35)

S;(v) is known as the Power Spectral Density (PSD).

1.6 Unification: PSD < ACF

It is well-known that the statistical properties of a Gaussian random variable are com-
pletely determined by its first two moments: its mean and variance. It is also well-known
that such a process can be completely described by its PSD. This leads us to hypothesize

that the time domain is no more fundamental than the frequency domain, and we expect
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that the information contained in the ACF should be related to that in the PSD.
Let us look once again at equation 1.30. Using the Fourier representation of z(t) we

have:

Ry (7) = B[x(t)x*(t — 7)] (1.36)

= [0 J25% BX (v, dv) X (v, dv)e 2milt (-l ag (1.37)
= [% E[|X(v,dv)|?|e"2m¥7)] (1.38)

= [%% Su(v)em 2= (=T, (1.39)

where we have assumed that the phases of the Fourier transforms are uncorrelated
to get the final equality. Thus, from equation 1.39 we have the famed Wiener-Khintchin
Theorem which states that the ACF, R, and the PSD, S, are Fourier transform pairs.

We also have that:

o2 4 m2 = Ry(0) = /Oo S, (v)dv, (1.40)

which is used extensively in this thesis. This discussion will also be relevant in Chapter
2 when we relate the observable correlation functions of the CMB temperature/polarization

fields to their power spectra, provided by theory.

1.6.1 Linear Filters

We close this section with a brief discussion on the response of linear filters. Again we

follow Mc Donough and Whalen in spirit and notation.
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Consider a signal z(t) which is passed through a linear filter. The output from the

filter is a convolution of the filter’s response function h(t) with the signal, viz:

y(t) = /_O:o h(t — ) ()t . (1.41)

The convolution theorem states that the Fourier transforms of y(t), h(t),z(t) are re-

lated vias:

Y(v) = Hw)X(v). (1.42)

If the filter’s transfer function, H(v) is known, then equation 1.42 lets us determine the
signal out of the filter by a simple inverse-Fourier transform. This fact allows us to analyze
numerous phenomena which are found throughout this thesis in topics as (seemingly)
unrelated as POLAR’s sensitivity to the polarization’s angular power spectrum and noise-

spectrum out of POLAR’s lock-in detectors!
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Chapter 2

The Standard Cosmological Model

and the Polarization of the CMB

2.1 Anisotropy of the CMB and the generation of Polariza-
tion

The anisotropy of the CMB is intimately related to its polarization. If our universe were
isotropic there would be no metric perturbations, and space-time would be completely
characterized by a Friedman-Robertson-Walker metric. Metric perturbations generate the
anisotropy of the CMB, which, as we will demonstrate, generates the polarization. In an
unperturbed universe (indeed, even in a universe with only first order dipole anisotropy
caused by the earth’s peculiar velocity with respect to the last scattering surface) there
would be no polarization of the microwave background. As shown in Chapter 1, polarized
radiation is produced by scattering of unpolarized radiation which possesses a quadrupole

moment. Monopole radiation produces no polarization upon scattering. Dipole radiation
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is really just a special case of monopole radiation as measured by an observer in a moving
reference frame. Since the velocity of the observer can be transformed to zero by an
appropriate boost, another observer comoving witht the radiation field would observe
a monopole field incident on the electron. Since the total polarized intensity by either
observer is frame-independent, the only reconciliation of this (apparent) paradox is that
dipole radiation can produce no scattered polarization. This is not true of a quadrupole
radiation field — it cannot be transformed away by any Lorentz transformation, and this
fact coupled with the orthogonality of the spherical harmonics, can be used to show that
it is only the quadrupole content of the incident field which can produce polarization via
Thomson scattering.

There are three classes of perturbation that generate anisotropy of the CMB: scalar
contributions, generated by matter and radiation density inhomogeneities, vector pertur-
bations generated by vortical flows in the photon-baryon fluid, and tensor contributions,
associated with gravitational waves. All three perturbations give rise to temperature
anisotropy in the CMB via the Sachs-Wolfe effect [23].

We have motivated the fact that Thomson scattering of anisotropic radiation by free
electrons generates polarization [24]. From equation 1.27 we see that scattering by a
single electron produces polarized radiation with an intensity approximately 10% of the
anisotropy quadrupole amplitude when averaged over all directions of photon incidence
and scattering. In the case of CMB polarization the exact polarization level, as well as the
angular scale of the distribution of polarization on the sky depend on the optical depth
along the observer’s line of sight, and on the particular sources of metric perturbation
([25]; [26]; [27]; [28]). For a recent review see: [29] and [30].

We see that there are two primary ingredients in order for polarization of the CMB
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to arise: free-electrons and an incident, anisotropic, radiation field possessing a non-
vanishing quadrupole moment. The CMB polarization observed today roughly scales as
~ fgo ne(t)ag,o(t)ci?—gdt where n.(t) is free-electron density at time ¢, ag g is the quadrupole
component of the CMB temperature radiation at ¢, and the integral is to be taken along
the line of sight from decoupling to today. Due to the appearance of sin® terms in equation
1.24, and the orthogonality of the spherical harmonics, only the quadrupole moment on
the incident photon field contributes to the Thomson scattering. However, the quadrupole
condition is easily satisfied for almost any class of perturbation.

Recall that prior to recombination, matter (in the form of protons and free-electrons)
and photons were tightly coupled, i.e. the spatial distribution and temperature of one
mirrored that of the other. The “linear regime” is the epoch when the density pertur-
bations (due to matter anisotropy) were small with respect to the global distribution of
matter. In this case we can expand the perturbations induced in the metric of space-time
into a spectrum of plane-waves. An individual plane wave has a multipole expansion in
cylindrical coordinates which is azimuthally symmetric with respect to its wave-vector.

Choosing an explicit representation for an individual plane wave, we have:

oo
20 =3 "(20 + 1) jy(2) Py(cos 0), (2.1)
0
where @ is defined with respect to the z-axis of the cylindrical coordinate system, j, is
a Bessel function and P, is a Legendre polynomial.
Again, we stress that the photon anisotropy prior to decoupling will have a matching

spatial distribution. The density perturbation produced by this plane wave will affect

the subsequent evolution of the distribution of matter and photons. At the peaks of the
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Figure 2.1: Matter falling into potential wells drags radiation with it. This radiation is blue
shifted and thus appears hotter than radiation coming to the electron along the troughs of the
plane-wave perturbation. The result produces a radiation field with an intensity given by the
quadrupolar pattern Y3 g.

density plane wave we are at a relative over-density in the matter distribution, and more
matter will tend to accumulate here, dragging “warmer” photons with it. A peak in the
density field is equivalent to a trough in the gravitational potential field. As a result,
looking in directions parallel to the plane wave’s wave-vector =z we see warmer photons,
while in directions along the troughs we see cooler photons (see figure 2.1).

This distribution of photons seen by the electron at rest varies as cos®#, or as the
spherical harmonic o< Y5 o . Figure 2.2 shows this spherical harmonic along with the other
two spherical harmonics with £ = 2.

Now consider a “toy-universe” with only one density perturbation prior to decoupling’ .
An observer at the present who is looking at the surface of last scattering will see the results
of Thomson scattering from electrons “seeing” their own local quadrupolar radiation fields.

Due to the quadrupolar anisotropy as seen by each electron, the scattered radiation will

1Such a perturbation is also known as a “scalar” perturbation since, unlike “vector” or “tensor” per-
turbations, it has no handedness, i.e., it is invariant under a parity transformation.
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Figure 2.2: The three quadrupolar radiation fields as seen in the rest frame of an electron which
can produce polarization via Thomson scattering. For each angular index £ there are 2¢+ 1 values
of the magnetic index m. Shown here, from top to bottom, is the radiation field produced by tensor
(gravitational wave) perturbations (¢ = 2, m = %2); the radiation field produced by scalar (density)
perturbations (¢ = 2,m = 0); and the radiation field produced by vector (vorticity) perturbations
(¢ = 2,m = £1). In this figure, the darker colors represent cooler, less intense photons, and lighter
colors represent warmer, more intense photons. The polarization axis is always oriented along the
direction of the more intense photons.
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be polarized and will travel to the observer at present, encoding the magnitude of the
quadrupole of the radiation field surrounding that electron prior to decoupling. Once
generated, the magnitude of the observed polarization depends only on the orientation
of the hot-lobe of the quadrupole with respect to the line of sight of the observer. The
total polarization seen by this observer in this “toy-universe” will vary as o< Y39 sin? @,
(see figure 2.3). To obtain the complete polarization pattern resulting from all density
(scalar) perturbations which are observed at the present time, we must integrate the
contribution of a distribution of plane waves with arbitrary wave-vectors. We note that
the superposition of any number of scalar perturbations produces a polarization pattern
on the celestial sphere which is curl-free. We refer the reader to [31] for an excellent
discussion of the geometry of CMB polarization as produced on the sky by vector and

tensor perturbations.

2.2 Ionized Epochs in the Evolution of the Universe

As mentioned earlier, the two key ingredients necessary to produce polarization of the
CMB are an anisotropic radiation field, and a supply of free-electrons to Thomson scatter
this radiation. To satisfy the free-electron condition we need to identify epochs in the
evolution of the universe when a plasma existed. We will now describe two such epochs:
recombination, and reionization. According to the standard model of the evolution of the
pre-galactic medium after recombination, the previously ionized hydrogen combined? to
form neutral hydrogen which was transparent to the CMB. However, the universe has

undergone a secondary ionization of this recombined hydrogen. Gunn & Peterson [32]

2Showing that the term re-combination is a aggregious misnomer!
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Figure 2.3: Seen here is a single plane-wave (scalar) perturbation, with wavevector k indicated
by the arrow, at last scattering producing a local quadrupole for each electron located at the
troughs of the potential perturbation (horizontal lines). The quadrupolar pattern Y3 seen by
each electron at the surface of last scattering produces the same amount of scattered radiation.
The observer at the center of the diagram sees each individual scattered radiation field with an

intensity which varies as sin® 6, (6 = angle between k and the line-of sight) corresponding to the
subtended angle of the hot lobe of the individual quadrupoles.
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formulate a measure of the ionization fraction of the intergalactic medium using the lack
of a Lyman-a trough in the observed spectra of distant quasars. Recent results show that
the majority of intergalactic hydrogen is highly ionized to a redshift of at least z ~ 5,
indicating that the universe must have reionized at an earlier epoch [33]. Several models
predict reionization occurred in the redshift range approximately 30 < z,; < 70 [34], [35],
[36], [37], [38], [39].

In general, models of reionization often rely on structures such as an early generation
of stars (Population I11), or energetic proto-galaxies to provide either ionizing radiation or
collisional heating mechanisms. Thus, for every model of reionization there corresponds a
structure formation scenario, as well as a commensurate set of cosmological parameters to
be confronted with observational evidence. We will not speculate here on the plausibility of
specific models of reionization. As noted above, the Gunn-Peterson test provides definitive
evidence for an ionized intergalactic medium out to a redshift of at least z = 5. In fact, the
upper limit on the redshift of reionization is set only by the paucity of observed quasars
beyond z = 5 and, in principle, could be much higher than this. The COBE FIRAS limit

on the Compton-y parameter
y = / drky(Tp — Temp )/ mec? < 2.5 x 107°

[40], severely restricts the energy input allowed in models of reionization, but does not
tightly constrain the epoch of reionization or the ionized fraction of the intergalactic
medium. The limit is compatible with many early reionization scenarios.

As far as the small and intermediate-scale temperature anisotropy measurements are

concerned, we refer the reader to [41], who perform a multi-parameter fit to the pub-
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lished temperature anisotropy results in order to extract the earliest permissable redshift
of reionization. They conclude that, for one of the currently fashionable “Cosmic Con-
cordance” models, (h = 0.65, Q, = 0.3, and A > 0), reionization is permitted as early as
Zreionization ™~ 39.

In contrast to the standard model of recombination, non-standard models invoke ad-
ditional ionized epochs. These models predict a prolonged, or even non-existent, recom-
bination and/or subsequent ionization of the recombined plasma. Since polarization is
generated by scattering of photons on free electrons, its magnitude and spatial distribu-
tion could be used to discriminate between non-standard models and the standard model
[42], [43], [26], [44], [45], [46], [47], [48]. An early reionization effectively introduces
an additional ‘last’ scattering surface. This has two effects, both of which, in principle,
can enhance the magnitude of the polarization on large angular scales. Primarily, the
additional scattering of photons during reionization can create new, or amplify existing,
polarized radiation via the Thomson mechanism discussed above. Additionally, the second
‘last’ scattering surface occurs at a much lower redshift, implying that the causal horizon
on this rescattering surface is larger, and thus, will subtend a larger angle on the sky
today.

As we will demonstrate, for reasonable non-standard models, the amplitude of po-
larization on 10° angular scales is on the level of 10% of the anisotropy, while for the
standard model of recombination the corresponding polarization level does not exceed
1%. Tt is worth mentioning that all of these models predict approximately the same level
of anisotropy at 10° scales, and hence all of them are compatible with the results of the
COBE DMR experiment.

In the remainder of this section we will illustrate the important theoretical features of
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the polarization of the CMB. We will first describe an analytic treatment which predicts
the level of polarization for both standard and non-standard reionization histories. Next
we will describe a numerical simulation of the effect of a non-standard reionization history
on the polarization of the CMB. We will find that the more qualitative analytic results

agree quite well with the quantitative results of our numerical simulations.

2.3 Polarization Produced by Cosmological Perturbations

We begin our discussion by developing a mathematical formalism which will allow us to
describe the polarization of the CMB in a consistent fashion. With these tools, we will
subsequently determine the polarization signal we expect to observe, using two differ-
ent techniques. The first method is an analytic approach which will provide a physical
framework for understanding the polarization of the CMB. The second approach is more
quantitative, and will allow us to obtain numerical estimates of the polarization signal. In
order to describe the polarization of the CMB, we will first introduce a parameterization
which describes the polarization state of arbitrary radiation fields. We then apply this
formalism to the polarization state of the cosmological signal which we are seeking to
detect.

An alternate representation for the Stokes parameters will be of use in the following
sections. We introduce a symbolic vector for the distribution function of occupation
numbers of polarized radiation: i = hc—jg,i, where I is the symbolic vector introduced in

Chandrasekhar (1960) and is related to the Stokes parameters in the following way:
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Since Thomson scattering cannot produce circular polarization, V = 0, we will only con-

sider the 3-vector:

An unpolarized distribution in zero-th order approximation is given by:

As shown in [26], and further discussed in [49]; [46], polarized radiation in the presence of

cosmological perturbations can be represented as:

1
i =n, 1 | +haf, (2.3)
0

where iy = N p + Ny is the correction to the uniform, isotropic, and unpolarized radiation

described by fig. The Planck spectrum, fi,, depends only on frequency, and fia +1niyg are the
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anisotropic and polarized components, respectively, which are functions of the conformal
time, 7, comoving spatial coordinates, %, photon frequency, v, and photon propagation
direction specified by the unit vector é(@, ¢) with polar angle, 6, and azimuthal angle, ¢,
given in an arbitrarily oriented spherical coordinate system.

The equation of radiative transfer in terms of f(n, z%, v, u, ¢), where pu = cos 0, is:

on on Oon Jv A
- ¥ = _g(h— A
on te ox® Ov On a(h = J) (24)
where
T _ L o JAPTARN a "o I
J* 47T _ 0 P(Ny%#a‘ﬁ)“(ﬁﬂ s Vs 7(25 )d:u dd)7 (25)

where ¢ = orNca, €* are the basis vectors, and the Einstein summation convention
is implied. In these expressions, a is the cosmological scale factor, f’ is the scattering
matrix described by Chandrasekhar [24], o7 is the Thomson cross section, and N, is the
comoving number density of free electrons. In general, the effects of a particular choice of
metric perturbation are manifest in the first term on the right hand side of (2.4). In the
synchronous gauge we have that:

0
v 1_(9ha5 Py
on 2 On
ov

[23]. After retaining terms up to first order in metric perturbations, h,g, and since o

is of the first order, we can replace % by % in the source term (v, is the unperturbed

Vo dne _ dlnng @ :
Tl = qme gives a universal frequency

frequency). This implies that the factor v =
dependence for anisotropy and polarization effects, independent of the type of metric

perturbations [26].
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The angular dependence of P is such that

Jrl 271' ~ ,
- / B, 6,1, ¢ iodps'd/ = (2.6)

(where 0 is the symbolic zero-vector), so we conclude in the zero-th order approxima-
tion, J = 0. For the first order approximation, in the following, we will understand by
“J» actually J 1, in which 1 is replaced by fiz.

After linearization and spatial Fourier transformation, the equation of transfer takes

the following form (with v, replaced by v):

on, . -
81;k +ikph ;= yHy — q(h; — Jp). (2.7)
Here, Hy = h ﬂke el and «7 = d%. We have specified spherical coordinates in such

a way that u = cos 0, where 6 is the angle between a vector along the line of sight, &, and
the wave vector k and ¢ is the azimuthal angle of the vector &, in the plane perpendicular
to the vector k.

For a given k h 7 can be represented as a superposition of scalar waves (below we will
use subscript “S”) and tensor gravitational waves (subscript “T” ). Taking into account
the tensorial structure of the waves, and restricting our consideration to perturbations
with wavelengths longer than the cosmological horizon at the moment of equipartion (i.e.
at the moment when the energy density of matter equals that of radiation, see for example

[50]), we can write

(= ) cos 20 B df] (Si“nk”)} wr(k)  (28)
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Here, the y/|ks7(k)|? are the amplitudes of the corresponding metric perturbations at
the moment when their wavelengths are equal to the cosmological horizon.

For kn < 1 we have:

1 3
Hi; = onk? s (k) — 5(1 = i1?) cos 26rr (k) (2:9)
while for kn > 1,
H- — LnkQ,uQmS(k‘) + i(1 — ,u2) cos 2¢ cos knrp (k) (2.10)
k15 kn? .

For a plane wave perturbation with wavevector E, the anisotropy and polarization can

be described [26] as:

1 1

R 1 e

fin=as(’ =) | 1 |+ —p)| 1 |cos2 (2.11)
0 0
1 (1 + u?) cos 2¢

= Bs(1—p?) | -1 | +06r —(1 + p?) cos 2¢ (2.12)

)

4 sin 2¢
Substituting (2.11) and (2.12) into the integro-differential Equation of Radiative Trans-

fer, (2.4), we obtain the following system of coupled ordinary differential equations for a.g

and Bs:

. 3 1
- N 1
Bs,r + 10(1551 10Q§S7T (2.13)
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s+ a€sr = Fsr, (2.14)

where (s = asr + Bsr, and Fgp is the appropriate source function for scalar or
tensor perturbations. This system of coupled equations illustrates the intimate relation be-
tween anisotropy and the generation of polarization. Integrating this system of equations

we obtain the following general solution for Bg7:

1 n
Bsr = —/ Fsr [6_T - 6_%7} dn’ (2.15)
? 7 0 E

where 7(n,7') = fg,, q(z®)dz® is the optical depth with respect to Thomson scattering.

2.4 The First Ionized Epoch: Recombination

We are now in a position to investigate the effects of a prolonged recombination of the
pre-galactic plasma. Recall that the contribution to the perturbation spectra for scalars
and tensors is parameterized by Fsr. By specifying the form of Fg7 we are effectively
enforcing a particular choice for our model. We will see that the polarization we observe
today depends only weakly on the effect of the details of recombination, and is more
sensitive to Fg 7.

For wavelengths large in comparison with the cosmological horizon at the moment of
decoupling, np, (knp < 1), the source function, Fg 1 at this moment can be approximated

by[49]:

Fop = lnkz (2.16)
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It can be shown that the source functions are rather insensitive to the exact functional
form of the variation of the optical depth with respect to time [26], [44]. These functions
are primarily characterized by the epoch and duration of decoupling. Following [46], we

adopt the following approximation for the time variation of the optical depth:

d
dr = -+
Anp
(see also [26] , [44] for a more detailed discussion). Here Anp is the characteristic time

scale of the duration of decoupling. Approximating the source functions under the integral
(2.15), by their values at the moment of decoupling np, which gives the main contribution

to polarization, we have

1 r __ _3.1dr
Bsr =~ ;(FS,T)|DA77D/ {e —e 0 ] — (2.17)
0 T
1. 10
= ?ln ?(FS,T”DAT/D
Hence,
1 (1 4 p?) cos 2¢
) 110 L ) 3
n-= _ﬁ]n EﬁDAnDk Y 5’4«5(]?)(1 )| =1 - Z“T(k) —(1 —i-,LLQ)COS 2¢
0 4y 8in 2¢
(2.18)

Comparing equation (2.18) with equation (2.12), we find that the polarization gener-

ated by a single perturbation mode with wavevector k is given by:
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2

Iz = ~108 In ?(nDk)(ADk)’y {/@S(k:)(l —p?) - %@T(k) [(1 + u?) cos 26 + 2usin 2(;5} } .

(2.19)
Now we can calculate the root mean square (RMS) polarization measured by an an-

tenna with an full-width-at-half-max (FWHM) ©4. The main contribution to the RMS

~ 21 _ 360°.

polarization, 11(© 4) , is contributed by modes with k < kpax(©4) ~ By = 5.0
A

1) = [P 2 (2.20)
4
2 10
=105 In ?ﬂDAnD’Y\/QSBS + QrBr, (2.21)
where:
1 16
Bs = [ (1—p?Pdu=g; (222)
. 15
9 1 27 1 27 36
Bro— oo | [ 0w [Teostaodos [ aau [sitas] = 2. 22m)
8w [J-1 0 -1 0 5

Here Qg1 = fokma"(@“‘) K ks (k)[29E, with |k 7 (k)2 = Kog k"7, and /|kog |2 are
the amplitudes of perturbations with wavelengths equal to the cosmological horizon at the
present moment (n = 0 corresponds to a scale invariant Harrison-Zeldovich spectrum).
These amplitudes are normalized to the COBFE DMR anisotropy quadrupole detection

which is approximately equal to 2 x 107°. Assuming that ng = ny = n, we obtain
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8 10 1 360°\ 22 27
H(O4) = ———In —npAnp—— | — VK2, + —k2 . 2.24
( A) 105\/ﬁ n 3 nD nD\/m <@AO) Y\ Kos 4 Kor ( )

Taking into account the relationship between redshift and conformal time, z ~ #, we

have that 822 ~ 221D hence
ZD 11D

o Anp  1Azp 1Azp 1 Z$D
npAnp =~ np =573 =5
D 2 zp 2 zp zsp \ zp

where zgp is the redshift of decoupling predicted by the standard model of recombination,
and zp is the redshift of decoupling we are considering, ¢.e., it is the “non-standard”

decoupling redshift. Finally:

A 70 242
(04) = 4 x 1077272 <ZS—D> (—) Ry (2.25)
ZD ZD ©4 ’
where
W _2x102n % < 7° )2 \ For T K35 108 (1 .\ 2)—1/2 (3600)% 1+ 2Zg?
™ 10515 360° 2x10-5 zgp 4 7° 1+ g2
(2.26)
and
_ For
Kog

is the ratio of the tensor perturbation amplitudes to the scalar amplitudes.
The factor N,, 4 incorporates the perturbation amplitudes, normalized to the anisotropy
quadrupole measured by the COBE DMR. It contains all information about the type of

metric perturbation, allowing us to isolate factors which depend upon the nature of the
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perturbations, and those which do not. For n = 0, and g = 0 (i.e., no tensor perturba-
tions), N, , ~ 1. When g = oo (i.e., no scalar perturbations), X, , ~ 1.84. Finally, when
g = 1 (i.e., equal tensor and scalar contributions), we find R, , ~ 1.47. From this we
observe that N, ; is rather insensitive to the ratio of tensor to scalar amplitudes, g.

We now emphasize the angular regions to which the preceding discussion is relevant.
Equations (2.24) - (2.26) ( which are based on asymptotic formula (2.9), and the approx-
imations used in (2.17)), are valid for modes which satisfy: kAnp < 1. In terms of angle

on the sky,

360° A
©4° np

We can apply equations (2.24) - (2.26) to an observation which has an angular resolu-

tion ©4, as long as:

1A 180 /A 1/2 A 1/2 /A —1/2
O4 > 04, =360°; ;D = — ( ZD) (ZSD) ~ go 22D (ZSD) ( 253D) .
2 ZD/2 ZS/l)2 ZD ZD zp \ 2D 10

Specific Models of Recombination

As an example, the standard model of recombination predicts % ~ (.1, which implies

that ©4 ~ 0.6°. For pure scalar perturbations (n = 0), the expected level of polariza-

tion at this angular scale is: I1(0.6°) ~ 6 x 1075 . For an observation with © 4 ~ 6°, the
polarization is I1(6°) ~ 5 x 1078, The observed polarization is suppressed by a factor of
~ 100 with this lower resolution beam.

Consider another example, a non-standard model for which %ﬂ ~ 1, and zp =~ zgp,

the angular scale is: © 4 ~ 6°. The polarization predicted in this scenario is: 11(6°) ~

min

5 x 1077, Finally, for ©4 < O4 the polarization is suppressed, and its dependence on

min ?
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Figure 2.4: A schematic diagram showing the effects of standard, instantaneous recombina-
tion, vs. non-standard, prolonged recombination on the angular scale and magnitude of CMB
polarization.

© 4 is determined by the details of the ionization history [51], [49], [44], [42], [43].
To summarize, for a given © 4, the polarization level is proportional to %ﬂ, see equa-
tion (2.25)) and is smallest for the standard model of instantaneous recombination. Al-
ternatively, this analytic approximation applies to smaller angles in the standard model,
as opposed to the larger angles predicted by non-standard models, with prolonged recom-

bination, (see [44] for polarization in standard and non-standard models.

2.5 The Second Ionized Epoch: Reionization

For POLAR to detect a non-zero polarization signal at the large angular scales which it

probes would require that the ionization history of the universe differ significantly from the
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so-called “standard model”. As mentioned earlier, non-standard models of the ionization
history are characterized by protracted decoupling and/or non-zero optical depth along
CMB photon trajectories. We have discussed the effect a of non-standard recombination
using the analytic method treated above. We now wish to examine the effect of reionization
on the details of the polarization of the CMB. This investigation lends itself particularly
well to the numerical evaluation of the polarization power spectrum, calculated using
numerical routines such as CMBFAST [52].

The effect of reionization can be parameterized in two equivalent forms. One method
is specified by the optical depth, 7, for photons due to Thomson scattering along a
line of sight to the last scattering surface. The second method specifies the redshift
of reionization, z4, and the fractional ionization z (electron-to-proton ratio). The two

parameterizations are related as follows [33]:

B z\ Qp /Q\"Y2/ h 32

where h is the Hubble parameter, € is the total density parameter of the universe, and {1p
is the density parameter of baryonic matter. Equation (2.27) shows the effect of curvature
of the universe on the optical depth. For reionization occurring at the same redshift and
ionization fraction, in an open universe (£2 < 1), the optical depth will be greater than in
a flat or closed universe. We also note that the physical size of regions which are in causal
contact (Hubble radius) at the epoch of reionization, t, is of order ~ ct;j. We expect
that regions smaller than this size will produce coherent polarization of the CMB, and
affect the observed polarization power spectrum at angular scales which correspond to the

angular scale subtended by the horizon size at the epoch of reionization. This argument is
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similar to those which predict a coherence scale in the CMB anisotropy power spectrum.
For example, the acoustic peaks in the CMB anisotropy power spectrum arise from causal
mechanisms (i.e., sound waves propagating in the photon-baryon fluid) acting on scales
of order the horizon size at the epoch of decoupling. A similar effect occurs for the CMB
polarization power spectrum, though in this case it is the horizon size of the re-scattering
surface, not the ‘primary’ scattering surface, which is imprinted in the observed power
spectrum.

Following Peebles [33], we expect that the observed CMB polarization angular correla-
tion scale will be: O, ~ 0.1(QBQh)1/3 rad. For Q =0.1,Q5 = 0.1,h = 1 we find O ~ 1°,
and for Q = 1,Qp = 0.05,h = 0.65 we find ©,;; ~ 2°. This new angular scale, absent
in non-reionized models, is manifested in the spatial polarization correlation function and
creates a peak in the reionized polarization power spectra at angular scales 8 > 0.5°.

Referring to subsection 2.6, a more quantitative prediction of the angular distri-
bution of polarization on the sky is obtained from the angular power spectrum. Us-
ing a publicly available software routine (CMBFAST—elaborated on below) to calculate
the power spectra, we have generated polarization spectra created by scalar perturba-
tions in a Cold Dark Matter (CDM) dominated, completely reionized, universe with
z=1,Q =1, = 0.05,h = 0.65. By varying the redshift of reionization in the range
0 < 2z < 100, we compute multiple polarization power spectra, which are displayed in
figure 2.5. The power spectra illustrate the main features expected from the theoretical
principles detailed above. Large angular scales correspond to modes with wavelengths
greater than the width of the last scattering surface. Prior to recombination photons and
baryons were tightly coupled and the relatively short timescale for acoustic oscillations

prevented the formation of long-wavelength perturbations. These effects are particularly
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Figure 2.5: Polarization Power Spectra with and Without Early Reionization. The solid curve
is the POLAR window function, W, and the theoretical model predictions are indexed by the
redshift at which reionization occured.

evident in models without reionization.

In models with early reionization, polarization at large angular scales is enhanced due
to multiple photon scattering following reionization. At smaller angular scales (¢ ~ 100), in
models with and without reionization, the polarization power spectra exhibit oscillatory
behavior, caused by the same type of acoustic oscillations which generate the Doppler
peaks in the anisotropy power spectra [48] , [51]. Though not relevant for the large angular
scale considerations discussed here, for £ > 100 the polarization is highly suppressed due
to Silk Damping [29].

The power spectra are, effectively, predictions of the polarization which should be

observable given a particular observing strategy. We will show in Chapter 8 that the
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RMS polarization expected from the spectra shown in Figure 2 , with © 4 = 7°, is in the
range 0.05uK< I, < 1.0uK, where the lower limit is standard recombination with no
reionization, and the upper limit is for total reionization starting at z = 105. These limits
agree well with the analytic estimates for non-standard ionization histories discussed at
the beginning of this chapter. For a 6° experiment and a non-standard ionization history,
figure 2.5 predicts a polarization level of 5 x 1077 ~ 1uK which agrees well with our

numerical simulations of early reionization (e.g., for zeionization = 105).

2.6 Polarization Power Spectrum

The analytic treatment above describes the essential physics responsible for the genera-
tion of CMB polarization. We have discussed the aspects of non-standard recombination
which are relevant to the large scale polarization of the CMB. In order to estimate the
observable polarization signature, we now detail a more quantitative approach based on
the polarization power spectrum. This approach also allows us to analyze the effect of an
early reionization on the observed polarization.

For quantitative estimates, the polarization and anisotropy source terms which appear
in the equation of transfer can be decomposed into Legendre series. The individual modes
are then evolved to the present where the spatial structure of the CMB can be computed
[42], [43], [52]. Because the fluctuations in the CMB are imprint during the epoch
of linear evolution of perturbations, the individual modes evolve independently. This
treatment lends itself particularly well to numerical analysis [52].

We start by considering the temperature of the CMB which, being a scalar valued

function, can be expanded in a spherical harmonic series on the sky, at a particular point
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on the sky, X:

T(R) = armYum(X) (2.28)

Zm

where the Yy, (X) are the spherical harmonics at X, and

1 R Nk R
iy = 77 / 4B T (B)Y(],,) () (2.29)

are the temperature multipole coefficients and Ty is the mean CMB temperature.

The temperature two-point correlation function is given by:

Cro=—— Z@%mwm) (2.30)

The variance of the a; ¢, is given by the Cr 4, since Var|ar ¢ ] = <\aT7gm|2>—<|aT7gm|>2 =
(lar.em|?) = Cr g if the ag gy, are Gaussian distributed with zero mean, and (...) denotes
a whole-sky average followed by an average over all observational positions.

The polarization of the CMB is a tensor-valued function, with a symmetry group dif-
ferent from that of the anisotropy. The main complication arises since the polarization
observables are coordinate dependent whereas any theoretical model worth its salt will
produce frame-independent predictions. Thus we are led to consider frame-independent
estimators of the power spectra. A hint at how to proceed is provided by the single hereto-
fore neglected Stokes parameter: V. Recall that V is associated with circular polarization
and hence is invariant under rotations about the line of sight. So if we can construct
a “Stokes Parameter” which looks like V, but parameterizes linear polarization it too
may be rotationally independent. The new parameter is actually two complex, linear

combinations of @ and U:
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(Q +iU)" (%) = expT2¥(Q £ iU)(X). (2.31)

Note that since the exponential is essentially a phase factor it will vanish when we
construct the power spectrum of (Q+iU) since then we will calculate ((Q+iU) (Q+iU)*),
which kills off the frame-dependent factor.

Polarization is usually described as either a vector field on the 2-sphere, or by the
(frame dependent) Stokes parameters written as if the celestial sphere were actually a
plane. Neither of which is correct, and both take away essential geometric information
contained in the polarization field. The polarization is actually a spinor field on the 2-
sphere — a most unfamiliar concept. To characterize it completely requires an expansion
of the polarization field into a suitable basis for spinors on the 2-sphere. Zaldarriaga
and Seljak [53] have made initial work in this direction based on the formalism originally
developed by Roger Penrose and others [54] for gravitational wave applications.

An equivalent, though more geometric approach, was developed by Kamionkowski,
Kosowsky, and Stebbins [55]; hereafter referred to as KKS. The KKS technique involves
expanding the polarization field on the sky as a tensor field : Py (fi). The polarization
tensor is a 2 X 2 symmetric (Py = Ppq) and trace-free (gabPab = 0) tensor, parameterized
by two real quantities. Given the Stokes parameters ) and U measured in any coordinate
system, we can construct Pu. For example, in spherical polar coordinates, (6,4), the

metric is gq = diag(1,sin? ) and

=

| Q(n) —U(f)sind
Pap() = 3 . (2.32)
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As pointed out by KKS, the factors of sin # must be included since the coordinate basis
for (0, ¢) is an orthogonal, but not an orthonormal basis.

We now seek the equations corresponding to 2.28 for the expansion of the polarization
tensor in terms of a complete set of orthonormal basis functions for symmetric trace-free

(STF) 2 x 2 tensors on the 2-sphere,

[es) l

=3 Y [0 Y () + AV Gyan(®)] (2.33)
=2 m=—1

where now we have two sets of expansion coefficients:

1
G Gab* ~ C _ ~ ~ Cabx/a
iy = 7 / AP (R)Y 50" (R), iy = 72 / 4B Py ()Y S0 (R).  (2.31)

Note that, since the scalar Spherical Harmonics obey orthonormality conditions, the
basis functions Y(?m)ab(ﬁ) and Y(?m)ab(ﬁ) will as well. These functions are given in terms

of covariant derivatives of the scalar spherical harmonics by [55]:

1
Y(?m)ab =N (Y(lm):ab - §gab}/(lm):cc) s (235)
and
Ny

YV(?m)ab = 7 (Yv(lm):ac&b + Y(lm):bceca) ) (2.36)
where €4, is the completely antisymmetric tensor, the “:” denotes covariant differentiation

on the 2-sphere, and

2(1=2)!

Ny = —= 2.37
AT ) (2.37)
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is a normalization factor. The new orthonormality properties are:

/dﬁ YV(?T:)ab(ﬁ) Yv(lc‘rm??(ﬁ) = /dﬁ Yv(?rs)ab(ﬁ) i/i(ljm%l))(ﬁ) = 6LDL’ 5mm’7 (238)
[ an Vi@ Vg a) = o. (2.39)

These functions are the rank-2 generalizations of the “Vector Spherical Harmonics”
used to Fourier expand the electromagnetic field [56]. As pointed out by KKS, the existence
of two sets of basis functions,“G” and “C”, is due to the fact that an STF 2 x 2 tensor
is specified by two independent parameters, which shows, not surprisingly, that the linear
polarization of a region on the celestial sphere is completely specified by two parameters, Q)
and U. In two dimensions, any STF tensor can be uniquely decomposed into a symmetric
part: A.qp — (1/2)gapA.c¢ and an antisymmetric part: B.,.€p + B.pc€q where A and B are
two scalar functions. This is reminiscent of the Helmoltz Theorem which contends that
a vector field (in 2 dimensions) can be expanded into a part which is the gradient of a
scalar field and a part which is the curl of a vector field; hence KKS use the notation G
for “gradient” and C for “curl”. The correspondence is even stronger: if we have an map
of polarization on the celestial sphere we can easily distinguish polarization patterns with
a large “C” component by locating divergence-free “swirls” and “eddies”, from large “E”
regions which are distinguished curl-free patterns.

Following KKS, we see that by integration by parts equations (2.34) transform into

integrals over scalar spherical harmonics and derivatives of the polarization tensor:

N[ oo o
Wiy = 7 / 4B Y (B) Py ™ (B), (2.40)
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Ny A Yk ~ :ac(a
agm) = To/dnY(lm)(n) Py’ ()eL. (2.41)

The second equation follows from €®., = 0. Since T and P, are real, all of the multipoles

must obey the reality condition

afimy = (=)™ - (2.42)

Scalar perturbations can produce only G-type polarization and not C-type polariza-
tion. On the other hand, tensor or vector metric perturbations will produce both types
[52]. Scalar perturbations are associated with curl-free motion of the photon-baryon fluid
prior to decoupling an hence have no handedness so they cannot produce any “curl”,
whereas vector and tensor perturbations do have a handedness. As pointed out by KKS
and Seljak, Zaldarriaga[53], and Zaldarriaga [57], observation of primordial (i.e., not pro-
duced at reionization or by foregrounds) C-type polarization (a nonzero agm)) in the CMB
would indicate the presence of either vector or tensor (or both) perturbations at the time
of last scattering. This would be strong evidence for the existence of gravitational waves
(which produce tensor perturbations), and provide the first detection of these objects.
Given a foreground-free, low-noise map of the polarization pattern on the sky we could
easily identify regions with non-zero “C”-type polarizations, and thus, we could literally

confirm the existence of gravitational waves by eye!
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Chapter 3

An Introduction to Radiometry

A microwave radiometer is a class of radio receiver which can measure the antenna tem-
perature of distant sources. Radio Astronomy at meter-wavelengths was pioneered by
K. Jansky in the mid-1930’s, but it was not until after World War Il that microwave
radiometry was applied to the peaceful studies of sources of microwave emission. Robert
Dicke is credited with the development of the first modern microwave radiometer which
could measure sub-Kelvin differences in antenna temperature with integration times of a
few seconds [58]. The technique known as “Dicke Switching” is a fundamental operating
principle in all modern day microwave radiometers, though its implementation takes on

numerous guises.

3.1 Total Power Radiometer

The simplest radiometer is known as the “Total Power Radiometer”. This device precedes
Dicke’s measurements, and its shortcomings motivated the development of the technique

which bears his name. The Total Power Radiometer consists of an antenna, a radio
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Figure 3.1:  Schematic of a Superheterodyne Total Power Radiometer. The antenna couples
radio frequency (RF) power into a high-frequency amplifier, whose output is subsequently down
converted in frequency by a mixer and local oscillator. The intermediate frequency (IF) band is
then amplified and detected. The final stage involves amplification, and filtration (integration) to
reduce the noise on the recorded DC signal.

frequency (RF) amplifier, a power detector (“square-law” detector), and an integrating
element. The square-law detector produces a voltage whose DC level is proportional to the
power received by the radiometer. Riding on this DC voltage is a noise-waveform, which
is smoothed by the integration element (usually a simple RC circuit). In figure 3.1 a
slightly more complicated receiver is shown which uses a down-conversion scheme (mixer)
to convert the RF band to a lower, more easily processed band known as the intermediate
frequency (IF) band. This technique, known as heterodyning, is implemented in two of
POLAR’s channels: called “TP0” and “TP1”, which detect the total power in the two
orthogonal polarization states of the incident radiation (which can be partially polarized

or unpolarized).

3.1.1 Minimum Detectable Signal

The minimum detectable signal of a radiometer is defined as the temperature of a source

which produces a power level equal to the power level produced by the thermal noise of
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the instrument itself in a given integration time [20].

Consider a radiometer with a system noise temperature Ty, looking at a load at
absolute zero. We assume that antenna accepts only one spatial electromagnetic field
mode and one polarization, the RF amplifier has a bandwidth of Avgg, and the integrator
has a bandwidth of Avyr. The power produced by the system is kpTsys Avrp, Where ky
is Boltzmann’s constant. This produces a square-law voltage spectral density (VSD) of
SIE o kyTsys. From Chapter 1 we note that the RMS fluctuations in the power produced
by the system are o2 = Javny (SEFAV)? = k2 (Avgr)(Tsys)?. This noise signal is integrated

for a time 7 corresponding to Avpp % From the convolution theorem applied to linear

filters, as in Chapter 1, we find that the total system power RMS is:

0% = 2(AvrrAvir) (kpTays)* (3.1)

When looking at a source of antenna temperature AT, the square-law detector pro-
duces a DC signal voltage: V o (kyTAv). To get the minimum detectable signal in an
integration time 7, we find the AT that produces the same amount of DC power as the

fluctuating AC power produced by the noise temperature of the radiometer. We find that:

Tsys

AT = ———.
VAUVRET

(3.2)

3.1.2 Limitations of the Total Power Radiometer Technique

The benefit of the Total Power Radiometer is its simplicity. Unfortunately, if the gain of
the RF amplifier varies, say with temperature or voltage fluctuations in its power supply,

the ultimate sensitivity to temperature variations of the source will be seriously degraded,
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and equation 3.2 is no longer true. Temperature and voltage fluctuations will, in general,
be worse on long timescales than on short timescales. This type of fluctuation is known

as “1/f-noise”. Equation 3.2 in the presence of 1/f noise becomes:

Tsys Tsys

ZW*W . ’

K
AVRET + V*O‘)

AT

(3.3)

where k and «a are both positive constants [59]. So we see that the effect of integrating
for longer periods of time is offset by the presence of fluctuations of the output of the
radiometer on long timescales. This was Dicke’s motivation to switch the antenna between
two different loads at a high frequency. In this approach the instrument does not have
enough time to change appreciably in such short timescales. The faster the radiometer
can be switched, the less important the 1/f fluctuations become. When one uses a single
receiver, and switches the antenna between a celestial source and a reference target source
of known temperature, AT is actually a factor of two larger than in the total power
approach. However, the decrease in noise at low-frequencies (near the switching frequency)

more than compensates for this decrease in sensitivity.

3.2 The Correlation Radiometer Technique

The correlation radiometer accomplishes the Dicke switching referred to above by viewing
the same source with two different receivers, and subsequently correlating their outputs
at RF frequencies using a multiplier. Physically, the multiplier is usually based on a non-
linear device, such as a diode (see Chapter 4), which acts as a switch when provided with
a bias waveform. The bias power for the diode comes from the uncorrelated RF power

in each arm, which being in the RF band, effectively (Dicke) switches at these high radio
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Figure 3.2: Schematic of a simple Correlation Polarimeter. Radio frequency (RF) fields are split
into two linear polarization states by an orthomode transducer (OMT), and amplified. The field
amplitudes are multiplied, producing a DC voltage proportional to their product. The DC product
voltage is filtered and amplified before being integrated (low-pass filtered) prior to being recorded.

frequencies. The system has a /2 noise advantage over the single receiver Dicke switch
[20]. The only penalty is the complication and cost of the second receiver. Consider the
simplified correlation polarimeter shown in 3.2.

Radiation from the sky couples into a feed horn which propagates both of the field’s
linear polarizations. The orthomode transducer (OMT) separates the two polarizations,
sending each one to its own receiver. The multiplier forms the product of the two fields,
which are subsequently integrated. This multiplication and integration is the exact defi-
nition of the cross-correlation of the two polarization states, as defined in Chapter 1. As

we will show in Chapter 4, for a single frequency, the fields which enter the multiplier are:

Ey(t) = By, cos[vt + ¢, ()] +ny(?) (3.4)

E,(t) = E,, cos[vt + ¢, (t)] + ny(t),
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where n; is the noise waveform generated by the amplifier viewing polarization state i.
Throughout we will assume (n;(t)n;j(t)) = 028;;. Following Thompson [60], we will

express an electric field as:

£(0,v) = / ~ B, e gy (3.5)
E(9,1) = / " B0, v)e TV dy, (3.6)

where E(6,t) is the electric field produced at time ¢ when viewing at an angle 6 with
respect to the axis of the horn. The horn’s amplitude response function, G(6,v) (with
dimension [length])l, is assumed here to be axisymmetric. The antenna output voltage for

polarization state i € {z,y} is:

/ B1(0, )G (0, 15)do. (3.7)

The output voltage, after being amplified by the HEMT /mixer/IF amplifier chain

(with total radiometer voltage transfer function H(v)), is V(;v) = H(w)Via(v).
The output of the correlator is given by:

R(r) = Jim 2T/ VL (8)V (t — 7). (3.8)

Lwhich is not equal to the power response function, B(6,v), obtained, for example, when mapping the
beam.
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R(T) =Moo 55 [°0 dt [0 duy [°5, duy [°0 dO [°2, 6/

X Ey(0,v2) B3 (0, vy) Hy (0, v2) H} (0, 1)

> G:I: (9/’ V$)GZ (9’ Vy)eiQﬂ'I/zte—iQﬂ'Vy (t—7) .

Remembering that [*_e?™ve=)dt = §(v, — 1), we have:

=
2
Il
—
8
2>

(v)B(v)H,(v)H} (v)e™  dv.

where:

is the source coherence function, and

Blv) = / 46 / G0, 0)CE(0, v)dO

(3.9)

(3.10)

(3.11)

(3.12)

is the power response function of the horn, conventionally known as the beam pattern.

The properties of the source coherence function and the beam pattern completely

determine the output voltage.

3.2.1 Minimum Detectable Signal

As in the case of the total power radiometer the sensitivity depends on both the system

noise temperature and the RF bandwidth of the amplifiers. Since there are now two RF

amplifiers we take the system temperature to be their geometric mean: Ty, = | /TgysTg”ys.
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For an unpolarized source which fills the antenna beam completely, each OMT polarization
port sees only half of the total incident power.

Since the correlation polarimeter is essentially differencing the power (antenna tem-
perature) of each polarization state, the correlator output can be symbolized by Vo
Ty — T,. If we assume the noise of the two receivers are uncorrelated (though approxi-
mately equal) then by simple error propagation we see that the RMS noise of the correlator
output is v/2 worse than the total power receiver. For the Dicke radiometer this result
also holds.

The minimum detectable temperature difference in an integration time 7 for the cor-

relation radiometer is:

[2Tz T4,
AT = # (3.13)

We also note here, for comparison, that the Dicke radiometer divides its integration
time equally between viewing the signal and the noise which is why it is v/2 times worse
than the correlation radiometer, and a full factor of 2 worse than the total power radiome-

ter[59].
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Chapter 4

POLAR: Experimental

Description

Before embarking on the technical details of the POLAR experiment, it is appropriate
here to give a brief historical overview. The development of the correlation radiometer
technique preceeded the discovery of the CMB in 1965; see for example [61]. In the
early days of the COBE experiment the idea to apply the correlation radiometer to do
CMB work was proposed. Although not implemented on COBE, development correlation
radiometers and interferometers as viable CMB receiver techniques continued for many
decades, boasting numerous experiments in the areas of anisotropy research ([62], [63],
[64]) and the spectral measurements of [65]. The idea to develop a correlation radiometer
for investigation of the polarization of the CMB can be traced to Prof. D. Wilkinson of
Princeton University.

As a final interesting postscript, we note that a (pseudo) correlation radiometer will

form the heart of the MAP [10] and PLANCK [11] Low Frequency Instrument’s techniques
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to recover the polarization and anisotropy of the CMB from space in the early part of the

next century.

4.1 POLAR: Experimental Overview

POLAR is the first dedicated correlation polarimeter designed for measurements of the
CMB. It has the widest bandwidth (~ 6 GHz) of any correlation receiver ever used for
CMB work. This chapter summarizes the major components of the instrument as well as
all known systematic effects. Measurement of polarization of the CMB poses a wide variety
of experimental challenges, many of which are familiar from the experiments now measur-
ing spatial anisotropy in the CMB. We describe below the design of POLAR to illustrate
the experimental issues that must be addressed in any CMB polarization observation.

POLAR measures polarization on 7° scales in the K, band, which is the spectral band
covering the frequencies between 26 and 36 GHz. This band is multiplexed into three
sub-bands to allow for discrimination against foreground sources and to solve technical
problems in the development of a wide-bandwidth analog correlator. The radiometer
executes a drift scan of the zenith with a FWHM = 7° beam produced by a corrugated
feed horn antenna. In a preliminary engineering run, POLAR has observed ~ 36 different
pixels for 5 days, and in a single night of data achieves a sensitivity level of ~ 100uK per
7° FWHM pixel.

POLAR’s design builds on techniques developed in previous searches for CMB po-
larization [13], [66], [15], [67], [17], [18] and is driven by several factors: the size
and angular scale of the anticipated CMB signals, spectral removal of foreground sources,

optimization of the observing scheme, and anticipated systematic effects.
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Radiation from the sky couples into a corrugated circular horn antenna (See Fig.
4.1). This antenna has extremely low side lobes, near —80 dB at 90° off axis, in both
polarizations, across a full waveguide band. The antenna output couples to an ortho-
mode transducer (OMT), a waveguide device that decomposes the incoming wave into
two orthogonal linear polarization components. The OMT defines the x-y coordinate
system of the antenna. The entire experimental apparatus rotates about the symmetry
axis of the feed-horn in order to measure both linear polarization Stokes parameters.

The @ and U Stokes parameters are defined in terms of a coordinate system fixed to
the sky. There are several approaches to measuring @) and U for a particular pixel on
the sky. Lubin & Smoot [15] employ a Dicke switch which alternately couples each of the
polarization components from the OMT to a low-noise amplifier and square-law detector
[66], [15]. Phase-sensitive detection at the modulation frequency of the switch yields the
difference between these two components, the () Stokes parameter, and helps overcome
1/f noise from the amplifier. After a 45° rotation about the antenna symmetry axis the
instrument measures the U Stokes parameter.

A second technique which has been used for polarimetry couples the output of an OMT
directly to two separate total-power radiometers [68], [69]. The beam is switched on the
sky to measure the spatial anisotropy in two orthogonal polarizations. This approach
measures the anisotropy in the @@ Stokes parameter of the incident radiation field, and
currently provides the most stringent upper limits on the polarization of the CMB.

An alternate approach, employed in POLAR, is the correlation radiometer [61], [59].
In this instrument the two polarization components are amplified in separate parallel
amplifier chains and the output signals are correlated, resulting in a signal proportional to

the U Stokes parameter. This type of instrument effectively “chops” between the two input
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RF signals at a frequency which is comparable to that of the RF signals themselves. An
advantage of this differencing mechanism is that it has no magnetic or moving parts which
have traditionally complicated experiments of this type. After a 45° rotation the correlator
gives an output proportional to the Stokes ) parameter. POLAR rotates continuously
about the vertical at 3 RPM. The rotation modulates the output sinusoidally between U
and @ at twice the rotation frequency and allows the removal of an instrumental offset

and other instrumental effects that are not modulated at this frequency.

4.2 The POLAR Radiometer

The POLAR radiometer is comprised of 3 main sections:

e Cold receiver components: optics, OMT, isolators, HEMT amplifiers.

e Room-temperature receiver components: warm RF amplifiers, heterodyne stage,

warm IF amplifiers, band-defining filters, detectors.

e Post-detection components: pre-amplifiers, low frequency processing, and data ac-

quisition.

4.3 Cold Receiver Components

4.3.1 Dewar

The components comprising the “cold receiver section” are naturally defined by those
contained in the dewar, which we will currently describe. The POLAR dewar is a custom

fabricated dewar constructed by Precision Cryogenic Systems' (see figure 4.2). The de-

'PCS: Indianapolis, In
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war is designed to house a CTI 350 cryocooler coldhead, and possesses no liquid cryogen
containers. The dewar was designed to be quite flexible, accommodating numerous pos-
sible upgrades. One possible upgrade configuration would include the addition of 2 more
corrugated feed horns in the nominal 20K (second stage) working volume. With this in
mind, the current working cold-volume is divided into three sections, where the K, section
occupies one-third of the shielded second stage. The first stage is used to cool a radiation

shield, which is nominally maintained at a temperature of ~ 80K.

9
e

| Ka Band Horn

Circ, to Sq. Trans.

| —20K Stage

| | —80K Stage

&1

/CTI 350 COLDHEAD

Figure 4.2: POLAR Dewar and K, band cold receiver components. The horn is located off of
the symmetry axis of the dewar in order to allow for future, higher-frequency receivers to perform
simultaneous observations.

4.3.2 Vacuum System

For a large dewar such as POLAR’s, a high vacuum is essential to achieve reasonable
cool-down times. The vacuum system is an Edwards Turbo pump system composed of

a mechanical roughing pump and a turbo-molecular pump. The turbo-molecular pump
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has an exit aperture, D, of 100 mm which is maintained for the majority of the vacuum
length, L ~ 1750mm. We convert from [SO-100 to KF-50 (50 mm) vacuum bellows hose
just prior to attaching to the dewar block-valve. As the conductance of a vacuum line
in the molecular-flow regime scales as D?/L, the large diameter pump lines more than
compensate for the relatively long length. After leak-proofing the dewar, and cooling

down, it remains at ~ 1 x 10~° Torr for months at a time.

4.3.3 CTI Cryocooler

Following pump-down to ~ 1 x 10~* Torr, the pump is detached and the cryocooler’s
compressor (CTI 8500 Air Cooled) is activated. The cryocooler is capable of ~ 50 Watts
of cooling power at 80K (first stage) and ~ 5 Watts at 20K (second stage). In the
field it is found that the ultimate cold stage temperatures are correlated with the ambient
temperature of the shelter in which POLAR resides. Because our compressor is air-cooled?,
as opposed to CTI’s water-cooled version, the compressor’s compression ratio is a strong
function of ambient temperature, which modifies its cooling efficiency. Maintaining the
temperature stability of the compressor is accomplished, to first order, by a commercial
air-conditioner during the summer months which counters the ~ 2kW heat output from
the compressor. During the winter, the heat output by the compressor itself serves to
keep the enclosed POLAR shelter at a nearly constant temperature. The compressor is
mechanically isolated from the radiometer by use of a separate rotation bearing coupled
loosely to the motor-driven main bearing by copper braid. The compressor is further

isolated on its bearing by use of rubber padding on all support structures.

2which is necessary due to the fact that POLAR rotates continuously
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The cold radiometer components are inside the 80K stage radiation shield. Of course
it is essential to have vacuum-tight feedthroughs into and out of the dewar. Both waveg-
uide outputs from the HEMTs leave the dewar through vacuum-port WR-28 waveguide
feedthroughs from Aerowave®. The feedthroughs are mounted on a single brass-disk flange,
which also serves as a feedthrough for the HEMT bias wiring and the Lakeshore® #10 Tem-
perature Diode readout wiring. The final major port in the dewar is the main vacuum
window through which passes our K, band signal. This port is mounted ~ 3” radially off
the rotation axis of the cryostat to allow for additional feed horns at higher frequency as

mentioned above.

4.4 Optics

POLAR’s optical system is simplicity itself. There are no unwieldy mirrors, chopping,
flats, secondaries, tertiaries, etc. The main element is a single corrugated feed horn. Due
to the absence of supplemental beam-forming reflectors, spurious effects introduced by
cross-polarization by optical elements is near the minimum possible level for a millimeter
wave instrument. Only optical polarimeters are capable of achieving lower levels of cross-

polarization [70].

4.4.1 Corrugated Scalar Feed horn

The only true optical element in POLAR is its corrugated feed horn. The canonical

theoretical treatment of these devices is discussed in [71]; this section merely describes

3 Aerowave Corp., Medford, MA

4Lakeshore Cryotronics, Westerville, OH
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the relevant device parameters which are necessary and sufficient to construct and model
the performance of the horn.

POLAR’s horn was designed by Dr. Josh Gundersen, and is based on the procedure
outlined in [72], and is nearly identical to the K,-Band feed horn employed by the COBE
DMR experiment [73]. The goal of the corrugated feed horn is to provide a low-sidelobe,
low-cross-polarization Gaussian beam on the sky. The device should exhibit a high degree
of symmetry in its E and H planes and, if possible, produce a diffraction-limited power re-
sponse with a narrow full-width-at-half-maximum (FWHM). The final condition is sought
since, as shown in Chapter 2, the angular power spectrum of polarized anisotropy on the
sky is expected to peak at small angular scales.

Although the input to the orthomode transducer (OMT) is square-waveguide, in which
we desire to simultaneously propagate only the TE?0 and TE& modes®, the horn has a
circular output and is most naturally treated using the theory of cylindrical waveguides. In
cylindrical coordinates a cylindrical waveguide will propagate a transverse field mode with
no azimuthal angle dependence® if certain conditions on the waveguide’s impedance and
admittance are satisfied. This mode will have a pure co-polar radiation field , i.e. on-axis,
its cross-polarization will vanish. The conditions required are that the impedance, Z, and
admittance, Y, at the waveguide wall are both identically zero. The impedance condition
is ensured by virtue of the fact that the azimuthal component of the field is always locally
transverse to the metallic boundary, i.e. Eygns = Eglr—r,. Maxwell’s equations near the

surface of a metal stipulate that the tangential component of the field vanishes at the

5This is the so-called “hybrid-mode” condition

5This is a “balanced hybrid mode”
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boundary of a conductor at r = ry, so Z < Ky = 0. Thus, the use of a metal has paid
off. But what about the effect of the corrugations? Surely if the walls of the guide are
not smooth, it is impossible to simultaneously have the impedance vanish at all locations
along the guide. However, as long as the corrugations are smaller than %, the field does
not sense the presence of the corrugations, and the surface is then just as conductive as a
smooth metal surface.

However, the corrugations have their role: they null out any residual admittance at
the wall of the guide, and effectively present a high resistance to currents which attempt
to flow along the walls of the guide. The corrugations are % in height, so that a field is
180° out of phase with itself after climbing up and then down the corrugation. This phase
cancelation is only strictly true for one frequency of course, but in practice the frequency
dependence can be offset by tolerating a slight mode imbalance.

Thus we have an electric field of the following form:

E;(r) = AJo(K.r)exp (%) Ey(r)=0

where r is the radial distance in our cylindrical coordinate system, A is the amplitude
coefficient, and K.rq1 = 2.405 is the root of the zero-order Bessel function Jo(K.r).
The complete modal-distribution of the E, field is given by expanding the Bessel

function in equation 4.1 in Gauss-Laguerre modes, viz:

Jo(Kcr) = i ApLg [i}—rj] exp (—r%/w?) (4.1)
p=0
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where Lg(ac) is a zero-order Laguerre polynomial and w = w(z) is the locus of points
where the electric field in the horn is %—times smaller than the on-axis field. Wylde [74]
demonstrates that in order to maximize the power (o< E?) in the fundamental mode, the
function w(z) should have a minimum at a point located w, = 0.6435a inward from the
horn’s aperture; here a is the radius of the horn aperture. The minimum of w(z) is known
as “the beam waist”, and is the Gaussian Optics generalization of the geometric optics
“focus”.

Table 4.1, reprinted from [75], in turn reprinted from [71] gives the calculated power
in each mode for the first 11 modes of the expansion in equation 4.1. We have used this
model to predict the far-field beam pattern of the POLAR K, band horn out to ~ 20°.
The agreement is quite impressive for such a simple model, obviating the need for a pricey,

commercial finite-element field-analysis code.

Table 4.1: Normalized Power Coefficients for Gauss-Laguerre Modes

H Mode | Power coeflicient H

0 0.9792
4.90 x 1077
1.45 x 102
1.86 x 1073
3.81 x 10~*
1.16 x 1073
3.97 x 10~*
1.50 x 10~8
1.59 x 104
2.33x 10°%
1.12x 104

OO0 T | W[N] —

—
o

If the horn had an infinitely wide aperture, its angular response’ would be a delta-

function. We would have a true “pencil-beam” — one with no off-axis response. Unfor-

"(F[E(r)])?, where F is the Fourier transform of the field in the aperture, E(r)|.—r.
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tunately, we could not accommodate such an idealization and our horn’s aperture field
pattern is necessarily truncated sharply at the physical radius of the horn, a. This sharp
transition introduces diffractive “ringing” in the angular power response of the horn, a
condition known as a “side-lobe”. The simple Gauss-Laguerre model breaks down at low-
power levels, which for us translates to the far off-axis sidelobes of the horn located at
~ 40° and beyond. In the absence of a reliable model for the far off-axis behavior of our
feed, we have measured the beam response for a variety of frequencies, for both polariza-
tions, as well as the cross-polarization response. The results of the simple Gauss-Laguerre

model are summarized in figure 4.3.

29 GHz E—plane No Lens, Comparison with Theory
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Figure 4.3: Shown here are the results of the Gauss-Laguerre model described in the text (solid
line), compared with the E-plane beam map at 29 GHz (triangles).

The final, but by no-means least important part, of the feed horn is the mode converter
which is a separate electroformed element placed at the throat of the horn. The mode
converter combines the TE®1; and TM°®q; circular waveguide modes to create the HE®q4
corrugated waveguide mode. The mode converter’s corrugations are of varying height,

unlike those in the flare section of the horn. The primary purpose of the variable height
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corrugations is to define the bandpass of the horn, without sacrificing the sidelobe or
cross-polarization levels achieved in the flare section of horn [71], [72], [76], [77].

Up until this point we have been rather amplicentric, ¢.e. we have largely ignored
phase considerations. The electrical path length from points in the aperture plane to the
horn throat is a function of r, implying that the phase of a wavefront which is in-phase
upon impinging on the aperture will be progressively out of phase as a function of radial
distance off the horn axis. This phase error leads to a decoherance of the electromagnetic
field. The phase error, A, is usually normalized to a particular wavelength, generally
the nominal band’s center wavelength, A,. From elementary geometric considerations we

have:

A= lsla"tu — cosf,) = Ai tan(@) (4.2)

where [,y is the length from the horn’s apex to its aperture radius, a, and 6, is the horn
flare’s semi-angle. Small-A horns produce diffraction-limited pixels on the sky, which are
necessarily frequency-dependent. Large-A horns produce nearly frequency-independent
beams because the frequency information is smeared out across the band. For 0.2 > A
and A > 1.2, the phase-center is frequency independent, though, in practice, difficult to
realize mechanically. For wide-band horns, the minimum width of the beam’s % contour
(the beam waist) is located in the throat of the horn and is given by: wy = %975. For the

POLAR horn, A ~ 0.6, placing the phase center closer to the aperture than to the apex,

resulting in a frequency dependent beam size as summarized 8in table 4.4.1.

8The author wishes to recognize the Herculean efforts of Chris O’Dell and his assistant Kip Hyatt
for producing outstanding measurements of the K, band beam parameters (and figure 4.3), as well as
Nathan Stebor who assisted the author in earlier pioneering, though less-sophisticated, beam pattern

70



31 GHz H—Plane
=

Relative Power
o

10 ‘ \ \ \
—100 —-50 0 50 100
Angle [deg]

Figure 4.4: The POLAR K,-band 31 GHz (middle frequency band) H-Plane Beam Pattern is
shown. The E-Plane beam map is similar to within ~ 1% out to ~ —20dB = 30°.

Table 4.2: POLAR K,-Band Measured and Modeled FWHM Beam Widths.
H Plane | v [GHz] ‘ 0 fuwhm £ 0.1° H

E 26 7.9°
E 29 7.6°
E 36 7.1°
H 29 7.5°
H 36 6.9°
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4.4.2 Optical Cross Polarization

As mentioned above, the corrugated scalar feed horn boasts a low-level of cross-polarization.
The cylindrical symmetry of the feed might lead one to expect that the cross-polarization
of the horn should be identically zero. However, even for a perfectly designed, completely
symmetric feed, this is not true. The reason for this is grounded in the geometry of the
horn and source when treated as a scattering problem.

Define the (x,y) plane to be the aperture plane, and ¢ to be the angle measured
clockwise from the y-axis in the aperture plane to the polarization axis of the field. We
first consider a field polarized along +g,and the x — z plane to be the scattering plane. Let
+k be the wave-vector, and ©(60, ¢) be the angle between —z and +k. ©(60, ¢) can have
both polar angle, 8, and azimuthal angle, ¢ dependence. Treating the wall of the horn
as a perfectly smooth conductor,” we find that for this scenario, the reflected field has
the same polarization after scattering, independent of ©(6,¢). Thus, for an ideal horn,
the cross- polarization induced by scattering in a plane containing the polarization axis
is identically zero since there has been no polarization conversion. This is also manifestly
true for scattering in a plane perpendicular to the polarization axis.

Now consider an incident field, again with a polarization in the +gy direction, but
now impinging on an element of surface area at an angle ¢ = 45°. Using the fact that
the electric field inside the conductor vanishes we obtain conditions on the reflected field’s

parallel and perpendicular components to the surface, F |, vanishes and we find that there

measurements.

90f course this is only strictly true for an un corrugated feed, but as we have shown, in the flare
section of the horn the corrugations are A\/4 in depth, causing the field to be 180° out of phase after
traversing one corrugation. This condition is identical to that of scattering from a perfect conductor, so
our approximation here is reasonable.
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is polarization conversion. For such a field we find that the incident field’s y-component
will be converted to an x-component upon reflection, thus producing a polarized signal in
the cross-polarization direction, £. The magnitude of the induced cross-polarization will

vary as sin® ¢, and will be peaked at ¢ = 45°, 135°, 225°, 315°.
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Figure 4.5: 29 GHz Cross-Polarization Beam Map. Here the solid line is the co-polar E-plane
(field parallel to the +6 direction) power response pattern, the dotted line is the cross-polarization
response as measured along the azimuthal direction, ¢, and the dashed line is the cross-polarization

measured along 0+ qAﬁ As mentioned in the text, both cross-polarization responses should vanish
at 8 =0.

4.4.3 Orthomode Transducer: OMT

Following the throat in the optical path, there is an electroformed adiabatic!® transition
from the throat’s circular output waveguide to the square-input waveguide of the OMT.

This device was designed by application of the Pyle Condition, which seeks to match the

10Gee [78] for useful definition of adiabaticity as applied to waveguide transitions
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cutoff wavelengths of the TE]DO and the TE°1; modes [79]. The transition was manufac-
tured by Custom Microwave Inc., of Longmont, CO.

The OMT!! is a waveguide device used to separate the two linear polarization states
in the incident field. POLAR’s OMT was fabricated by Atlantic Microwave'?, and is a
three-port device with a square input port, and two rectangular output ports containing
the orthogonal polarization signals.

Although not strictly representative of POLAR’s OMT, the paper by Chattopadhyay
[80] presents an equivalent circuit model of a functionally equivalent device. The OMT’s
entrance port is K, band square guide which supports both TEODl & TE1D0 modes simulta-
neously. Inside the square guide is a thin septum which behaves as a 3-dB power divider
for the TE]D o mode, and reflects the TEOD1 mode towards a short-slot coupling port trans-
verse to the incident field. The slot is often reduced in size by the addition of an inductive
iris to improve coupling to the TEOD1 mode, and reduce the coupling to the TE1D0 mode.

To compensate for the added reactance of the iris, a canceling (capacitive) reactance is

added in parallel [80]. See table 4.3 for a summary of POLAR’s OMT properties.

Table 4.3: Properties of POLAR’s OMT: Atlantic Microwave Model 2800.

H Property ‘ Value ‘ Notes H
Isolation -35 dB | Specified and Measured
VSWR < 1.2 | Specified and Measured
Cross-polarization | -30 dB Estimated

1Variously referred to in the communications literature as: polarization diplexers, dual-mode trans-
ducers, ortho-mode tees, and orthomode junctions. Communications applications use these devices to
broadcast and separate channels which share identical bandpasses. SATCOM TV applications, broadcast
odd TV channels in one polarization, and even TV channels in the orthogonal polarization.

12Boston, MA
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Non-Beam-Forming Optics: Vacuum Window and Ground Screens

The vacuum window is given the task of allowing radiation to land on our detectors, while
keeping the innards of the radiometer cool and pressure-free. To this end, a sophisticated
multi-element approach was adopted. The window was designed by Chris O’Dell, and
based on the extensive investigations of Peter Timbie’s MSAMII/Top Hat work. The
main features of the window are a 3 mil vacuum-tight polypropylene vacuum barrier and
non-vacuum-tight Gore-Tex window support which bears the several hundred pounds of
force on the window. A layer of Volara'® (expanded polyethylene) serves to seal in a
dry-nitrogen layer between the polypropylene layer and any precipitable water vapor in
the atmosphere which would otherwise condense and freeze on the vacuum window. The
window is exceedingly leak-free, allowing pressures of < 10~° Torr to be maintained for
months at a time.

The final pseudo-optical elements of the POLAR instrument are its two concentric
ground screens, see figure 4.6. The use of two ground screens is not unusual in the field,
although POLAR’s screens are optimized to reject polarized spillover, rather than total-
power spillover.

The theory of ground screen operation is quite simple: one attempts to steer the
power received in the sidelobes of the optical system to a well-known, constant, and
preferably low-temperature source, rather than allowing them to land on the earth’s 300K
surface. It is essential that the sidelobe response not be modulated by the instrument’s
modulation scheme or else synchronous signals will be produced which, in principle, are

indistinguishable from the feeble cosmic signals we are attempting to measure.

13Voltek Corp.
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Figure 4.6: POLAR’s Groundscreens. Two sets of ground screens are used to reduce the polarized
spillover from the earth, as well as polarized emission from the shields themselves. The outer shield
is fixed to the structure in which POLAR resides, and is composed of a lightweight steel skeleton
covered by 0.05” aluminum sheets. The inner ground screen is covered with flat Eccosorb panels
(to reduce their polarized emission), and co-rotate with the POLAR radiometer. Also shown is
the motor-driven, fiberglass clamshell-dome which can be remotely operated via the World Wide
Web in the event of inclement weather.
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POLAR’s ground screen approach is dual-purposed. First an inner conical ground
screen rotates with the instrument and is coated with Eccosorb. The Eccosorb panels ab-
sorb, rather than reflect the sidelobes to the sky. This absorptive approach is uncommon
in CMB anisotropy experiments as it increases the total power loading on the detectors,
which is particularly troublesome in the case of ultra-sensitive bolometric detectors. How-
ever, we estimate that the antenna temperature of the inner shield to be < 1K. Polarization
generated by emission from the bare metal surface of the uncovered shield is believed to
be much more troublesome than the slight increase in system temperature. Additionally
POLAR’s inner ground screen co-rotates with the receiver, which ensures that if there
is any residual polarized power produced by the inner screen, it will produce a constant
polarized offset, rather than a less-tractable, rotation-modulated offset.

The second level of shielding is of the more conventional reflective-scoop design, e.g.
Wollack [17]. The scoop'* is mounted to the side of the POLAR observatory, and is made
of aluminum panels 8 wide and 6’ high. To estimate the level of sidelobe suppression
induced by this shield we have employed Sommerfeld’s diffraction calculation for points
deep in the shadow region of a knife-edge scatterer [56]. We estimate the suppression
to be ~ —40 dB, which in combination with a similar (measured) figure from the inner
ground screen, and the low-sidelobe response of our feed horn, gives a total estimated
sidelobe suppression of over -100 dB. We note that the diffraction calculations employed
throughout the design process were based on scalar diffraction theory rather that the more

complete vector theory, which is most appropriate for a polarization experiment.

14 designed and built by Nathan Stebor and Kip Hyatt
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4.5 HEMT Amplifiers

The development and implementation of wide-band low-noise amplifiers has revolutionized
the field of coherent CMB radiometry. There exist no commercial devices which can match
the performance of the amplifiers produced by the National Radio Astronomy Observatory
(NRAO), under the direction of M.W. Pospieszalski and W.J. Lakatosh. Current devices,
capable of up to 20 GHz bandwidths with noise temperatures lower than 50 K, are available
for all waveguide bands up to W-Band (75 - 110 GHz).

The POLAR K,-band HEMT amplifiers were constructed in the Fall of 1994 and are
no longer considered “state-of-the-art”. Our amplifiers are based around HFET transistors

produced by Hughes Electronics.

SOURCE GATE DRAIN
ﬁ 2 n GaAs
n AlGaAs LAYER
AlGaAs
SPACER
UNDOPED GaAs

SEMI-INSULATING GaAs SUBSTRATE

Figure 4.7: HEMT Structure

A generic structure is shown in figure 4.7. The HFET itself has electron 2DEG sheet
densities of ~ 102cm~2, and a mobility of 10*%cm?/Vs, thus justifying the name High
Electron Mobility Transistor when compared with the mobility of a “garden-variety” low-

frequency, coolable, low noise FET, which has a mobility of 5 x 103cm2/Vs and noise
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temperatures of ~ 100 — 200K. POLAR’s NRAO amplifiers'® are composed of four indi-
vidual transistor stages, with the lowest noise device preceeding the following three. Each
stage provides roughly 7-8 dB of gain, resulting in an overall gain of ~ 30 dB. Current am-
plifiers utilize InP based devices for the first stage (which have lower noise-temperatures
than GaAs devices) at the expense of slightly increased 1/f noise. However, the low-
frequency spectral properties of these amplifiers are largely irrelevant (at least in theory)
for radiometers such as POLAR which employ the correlation technique.

NRAO supplied the amplifiers as well as support electronics which provide regulated
voltages and currents to each of the four individual transistors. Supplied with the devices
are data sheets which specify the NRAO-optimized values for the gate bias-current and

the drain-source voltage. After tuning these parameters, the device’s transconductance,

dl.

Im = Gt is completely determined. At a fixed Vy,, the noise temperature depends on the

drain current weakly, but with a well-determined minimum. Unfortunately, this minimum
noise-temperature current results in a rather low transconductance, and thus low-gain.
So, an optimization is carried out in a two-dimensional parameter-space for each of the
four transistors in each of the two POLAR HEMTS. With appropriate parameter tuning
the devices can be used at room-temperature which is quite convenient for prototyping a
radiometer while still in the user-friendly confines of the lab.

POLAR’s two amplifiers had noise temperatures of ~ 65 K when measured at NRAO
5 years ago. Currently we measure the noise temperature of the entire system, which

includes contributions from numerous lossy and emissive components which preceed and

15Serial Numbers: A29 and A30
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follow the HEMTs'®, to be: ~ 75K (See Chapter 5). We can assume that the HEMTs
dominate this value, though the aforementioned non-idealities of the system contribute
~ 15 K. A future goal of the POLAR K, band receiver is to obtain upgraded InP devices,

which should decrease our system temperature by a factor of at least two.

4.6 Room Temperature Radiometer Box: RTRB

After amplification, the signals leave the dewar through custom-made coin-silver waveg-
uides which route the signals along a complicated, bending 3D path from the HEMTs in
parallel to 6” stainless steel waveguides which provide a thermal break from the 300K de-
war walls to the 20K HEMTSs. The stainless guides are bolted to a vacuum-tight K, band
waveguide feedthrough manufactured by Aerowave. Outside the dewar, straight sections
of Rhodium plated, brazed-copper waveguides are used to compensate for the path-length
differences between the two polarizations incurred by the 3D bends. As mentioned in
Chapter 4, it is essential that the two signals traverse identical electrical path lengths so
that the electric fields will be in-phase at the correlators. Finally, the waveguides enter the
RTRB, where the signals are converted from waveguide to coax to match the inputs of the
MITEQ [JS426004000-30-8P] K,-band warm HEMT amplifiers. These devices are based
on HEMT technology just as the NRAO devices are, however their noise temperatures
are significantly higher: T]]VW]TEQ ~ 250K. To compensate, these devices outperform their
more refined cousins in the following all-important qualities: gain, delivery time, and not
surprisingly, price!

Following this second-stage of amplification, the signals are down-converted in fre-

165ee Chapter 5 for a discussion on spurious loading introduced by these components.
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quency by the superheterodyne components, as delineated in the following subsection.

4.6.1 Superheterodyne Components

We down-convert in frequency because the ultimate multiplication of the signals is most
easily performed at the lowest tolerable frequency which still preserves the nominal 10
GHz bandwidth. Down-conversion maintains the bandwidth, and allows us to further
amplify the signals before they are detected.

Superheterodyne techniques are common in almost all modern commercial communi-
cations applications, though in recent years they have been de-throned from their position
as the CMB community’s “receiver-of-choice” where they reigned in the 60’s and 70’s. We
now present a brief review of the technique.

Following [70], we Fourier expand the input signal as:

V2
A=Y a;cos(2mvit + ¢y), (4.3)
Vi

and the local oscillator’s pure-harmonic signal as:

B = bcos(2mupt + ¢p,). (4.4)

The low signal level output of the mixer is approximately: (A+ B)? = A2+ B?+2AB,

which is:

va v

= Z Z a;a;j cos(2mut + d;) cos(2mvst 4 @) + b2 cos? (2mvmt + Pm) +

V=1 V=1
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Vo
2b Z a; cos(2my;t + ¢;) cos(2mupmt + dr). (4.5)

vi=r

Using some simple trigonometric relations, we can conclude that the first term on the

HRS of equation 4.5 contains terms:
e between 2v; and 21y
e between |v; — vo| and |vp — vy].

Term 2 contains the frequencies 2v,, and 0 (i.e., DC), and the third term contains

frequencies:
e between vy + v, and vy + vyy,.
e between |V — vp,| and vy — vy, |.

The IF port of the MITEQ [TB0440] triple-balanced mixer is transformer coupled and
passes only frequencies between 2 - 12 GHz. The final spectrum of the “intermediate
frequency” (IF) — i.e. down converted, port’s output is:

Vin+vp
b Z a; cos[2m(v; — Um)t + ¢ — dmls (4.6)
Vi=Um~+va

which is a (scaled) replica of the input, RF, with an identical bandwidth, though
now at lower frequencies: IF. The IF signal is subsequently amplified in the IF band
to provide the appropriate bias power level into the multiplier. Each multiplier requires
~ 6dBm, or 4 mW, of bias power to function as a bilinear multiplier. We must amplify the
signal substantially to meet this requirement as the three multipliers are preceeded by a
triplexer which attenuates each signal by a factor of three in power. We use two stages of

IF amplification, again provided by MITEQ devices with 2-12 GHz band passes. The gain
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of each device falls steeply above a frequency of f3;g >~ 12 GHz, attenuating any residual
out-of-band frequencies which might otherwise be propagating in the coax transmission

lines.

4.6.2 The Correlator

After mixing and IF amplification, the signals are frequency multiplexed by Reactel triplex-
ers. The function of the triplexers is two-fold. First they serve to provide us with three
(ideally) independent bands from which we may investigate the spectral behavior of our
signals. Secondly, these devices allow us to “flatten” the gain of the system across the
wide RF-bandwidth that we achieve with the HEMTs. This ensures that the effective
bandwidth will not be reduced from its nominal specifications. Following the triplexers,
the signals from the two polarization states are fed into three separate wide-band multipli-
ers (one for each sub-band). The multipliers themselves are MITEQ [DBP112HA] double
balanced mixers with RF band passes from 1-12 GHz and an IF bandpass from 0-500
MHz. The IF output port is not transformer coupled, and can thus propagate the DC

signal proportional to the correlation between signals in the x and y polarization states.

Performance of an Ideal Multiplier

There are several ways to implement a correlator for use in a correlation radiometer [10],
[62], [65], [63], [81]. POLAR utilizes a correlator based on Schottky-diode mixer tech-
nology. In this manifestation, the ideal correlator is realized by a double balanced mixer,
a phase modulating element, and lock-in amplification. At the heart of the correlator is
the wide-band double-balanced analog multiplier. This type of multiplier isolates both

RF input ports from one-another, while the IF port is coupled to both. The primary
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Figure 4.8: Electrical Schematic of Multiplier

difference between a multiplier and a conventional mixer is that the IF bandwidth is made
intentionally narrow to suppress frequency components greater than ~ 100 MHz. As the
RF ports have bandwidths from 1-12 GHz the narrow IF band prevents higher order terms
than essentially DC from propagating in the output. In many circles, a narrow RF band
multiplier is known as a ‘phase detector’, for reasons which will become apparent shortly.

The transformer coupled inputs coherently add the signals at both RF ports, tradition-
ally labeled by ‘L, for LO (i.e. Local Oscillator), and ‘R’, for RF. Due to the symmetrical
arrangement of transformers and diodes, in practice, there is no electrical distinction be-
tween the two RF ports. A schematic of the multiplier is shown in figure 4.8.

The multiplying element itself is a bridge arrangement of Schottky diodes. The Schot-
tky diode is a metal-semiconductor junction device with an I-V characteristic of:

+eV

I(V) = L(e™T — 1)
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where I, is the reverse saturation current, k; is Boltzmann’s constant, e is the charge
of the electron, and n ~ 1 is the “ideality factor” parameterizing non-idealities of the
junction. Following Maas [82], we model the diode as a current source, I(V') in parallel with

a junction capacitance, together in series with a resistor, R;. The junction capacitance is:

Co

T v L
(1 — %)2

o) =

where C,, is the junction capacitance with zero voltage difference, and ¢y; is the junc-

tion’s built-in voltage. C(V') is implicitly defined by:

_ 4Qd

)= av

where @4 is the depletion-region charge. The capacitor’s output current is:

1) = c(v () x LW
dt
We will also need the junction’s conductance:
dI(V) —e
Vi= ——== I(V).

Now we can express the diode’s output voltage as Vo = IR; = Z~ 'V = YV R, where
Z is the equivalent circuit impedance, and Y is the corresponding admittance. We have
that:

Z = (g +iwC)™" + Ry,

SO:



4.6.3 Multiplication

Expanding the ideal I-V curve for small junction voltages, we find that :
Vout(t) o constant +aV(t) + BV3(t) +...,

showing the non-linear dependence of Vot on V. Here, the amplitude terms in boldface
are complex quantities, so we must pay attention to phases. For the mixer, V = V0 + VRF
so that Vo o |VLo|? + VioVrr+ViLoVir + |[Vrr|2. The quadratic terms result in a
DC component of magnitude |Vyo|? + |[Vrr|?, while the bilinear terms produce the de-
sired “mixed” terms. In the case of the correlator, the DC component will also contain a
contribution from the cross-correlated components of the signals at the RF and LO ports.
We assume that Vg, (t) will be integrated, for a time period 27", which kills off the term
linear in V (t).

For the bilinear terms we have:

1 T
(VRr(t)Vio(t —17)) = ’Il‘lnoo >T /_T Vrr(t)Vio(t — 7)dt. (4.7)

We now choose an explicit representation for the signals:

Vip(w,t) = VgpeltHonr) (4.8)

VLO (Vv t) = VLOei(Vt—HbLO )7 (49)
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(4.10)

so equation 4.7 becomes:

Vou(T) = 77 (VRF(t) Vi (t — 7)) (4.11)
= lim7_. fTT VRFei(th+¢RF)VLoe—i(V(t’—T)—i-(bLo)dt/
- ]1m’r_>oo fTT VRFVLOei(wiy)t/+VTe¢LO7¢RF dt/

= (VrrV5o)d(w — y)ei(¢LO*¢RF+IJ7)

At zero lag (7 = 0), the output is (VgpVi0)d(w—r)e!(#L0=9rF) showing that no output
results when the RF and LO ports are at different frequencies. When the frequencies are
matched, the output varies sinusoidally as cos(¢ro — ¢rr), justifying the name “phase
detector” as mentioned above.

The above analysis has only treated a single frequency component. In practice both

the LO and RF signals are composed of a finite band of frequencies:

Vo+AUVRF

Vio/rr(t) = / Vio/rr (v, t)e*™ " dv. (4.12)

Vo

Substituting the above into eq. 4.11, we find:

Vo+AvRE
Rpr(0) = /V (VLo (V)VRr(v)) cos(dLo(v) — drr(v))dv. (4.13)

o
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Performance of the Non-Ideal Correlation Radiometer

The simplest non-ideal behavior of the correlation radiometer is the effect of electrical
path length mismatch between the input arms. From eq. 4.11 the correlator’s DC output
is proportional to cos(¢pro —¢rr). If the phases themselves are frequency dependent, as in
the case of a path length mismatch, then the DC output of the correlator will be reduced

by the cosine term. The path length difference AL introduces a dispersive phase shift via:

¢(w, AL) = 20 AL/ A guide = 27 ALvs From eq. 4.13, we have:

C

ALy,

Vot AVRE 2mi(w)t
Rip(0) = / Vio (v, Vip (v, )€™ cos(20 2220 gy, (4.14)

o

C

The contribution of each spectral component is thus weighted by the cosine of its
phase. Equivalently, the bandpass of the correlator is modulated by the cosine term. It is
therefore imperative to accurately match the path lengths in the system. In practice this
is accomplished by injecting a completely polarized signal into the OMT input which is
swept in frequency across the RF band. By measuring the modulation of the spectrum
of the correlator by the cosine envelope, we can determine the equivalent electrical path
length imbalance. From these measurements one can also determine the bandpass of the
correlation radiometer once it has been phase-optimized. The electrical path difference
measurements agree quite well with measurements of the physical waveguide path differ-
ence. To balance the path lengths one simply adds the appropriate length of wave guide
to the shorter arm of the receiver.

The remaining contributions to the non-ideality of the correlation radiometer result
primarily from gain and phase asymmetry between arms, across the band passes. The

effects can be caused by mismatched bands, temperature dependence, and phase instability
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Table 4.4: Tolerances on Frequency Response Variations for a 2.5% Reduction in SNR

|| Type of Variation | Permissable Level ||
Amplitude Slope 3.5 dB across band
Sinusoidal Ripple 2.9 dB peak-peak
Inter band Centroid Offset 5% of Avys
Phase Variation across band 12.8°

of the amplifiers and/or the correlator. In practice it is impossible to eliminate all such
effects, and so in table 4.6.3 we provide an estimate of the tolerable level of a few of these
effects such that they would contribute to a 2.5% degradation of the signal-to-noise ratio
of the correlation receiver following Thompson et al. [60].

The final non-ideality of the correlation radiometer which must be confronted is its
temperature dependence. There are two relevant effects caused by temperature fluctua-
tions: gain instability and phase instability. Even for an ideal multiplier there is a DC
component of the output which is proportional to the sum of the total RF power in each
arm. Let us examine the effect of a change in the total power output (modulated, for exam-
ple, by changing atmospheric antenna temperature, T') on the output from the correlator.
We will assume that the radiometer is viewing an unpolarized source which produces fields
Ey(T) and E,(T), which are themselves functions of the ambient temperature. We will
further assume that the feed horn is symmetric w.r.t. the E and H plane response and all
band passes are identical between the two arms. The output from the correlator is given

by:

Vout (T) o< (|Ex(T)|? + E(T)Ey (T) + Ey (T)Ex(T) + [Ey (T)[*).

The two bi-linear terms in E,, E; vanish due to the uncorrelated assumption. The two

quadratic terms survive and we assume that the audio frequency power spectra of the two
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fields are given by:

S]/ _ /Egll/jknee +Eg

where the frequency dependent term is caused by fluctuations in the power response
due to temperature variations. Since this 1/f spectrum now appears in our multiplier
output, it too will have a 1/f spectrum; apparently defeating the purpose of utilizing the
correlation technique in the first place! There are two methods to remove the contribution
from the total power channels. One is a hardware based approach, and the other is
based on software removal of the total power contribution. In the final analysis, POLAR
incorporates techniques from both approaches to achieve a high-level of suppression of

residual contamination from the effects of the earth’s atmosphere.

Software Based Solution to Correlator Drifts

The software-based solution does not utilize the phase modulator. Instead, the DC out-
put from the correlator is measured, including correlated and uncorrelated contributions.
After binning the correlator signal and both total power signals, fits are performed to the
correlator output and the best-fit reconstructions of the total power signals are regressed
out of the correlator signals. This technique removes most, but not all, of the total power,
1/f contaminated, contributions to the correlator output. The primary reason limitation
is that in practice the sampling of the detector outputs is not sufficiently fast to accurately
sample the total power channels which have vi,0. ~ 4 Hz. We would need to sample the
detectors much faster than 2vp,.. ~ 10 Hz to avoid aliasing. However, our audio band-
width is 0 — 5 Hz, so we would certainly lose high-frequency information from the total

power channels simply by our choice of integration and data acquisition methods. To
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address this problem we bin the raw total power output at 1 sample/.05 seconds to 1
sample/.5 seconds , which effectively introduces a low-pass filter into our data stream at
~ 2 Hz. Thus we lose information at timescales shorter than approximately twice the bin
size, which certainly excludes a large portion of the HEMT low-frequency power spectrum.

However, the software solution offers a great deal of flexibility in the analysis, and has
been applied with success in the anisotropy detections by Femenia et. al [83]. Additionally,
we avoid the offsets which are associated with adding active components, such as the
modulator, with its attendant differential loss. We have simulated the performance of the
DC offset removal technique in various scenarios. First, we generate random, noise like,
data representing signals for TPO and TP1. Then we can simulate a correlator signal
with and without a component which possesses a variable amount of correlation with the
total power channels. We can then observe the power spectra of the correlator before
and after regressing out the correlated component. In all cases the technique reduces the
RMS fluctuations from the simulated correlator output. Note that since this simulated
data is white noise it is not an accurate representation of the actual signals in the real
radiometer. Therefore we also need to test our technique on real data taken while viewing
the sky or a temperature stabilized black-body calibrator. The latter measurement only
contains fluctuations from the radiometer, while the former contains contributions both

from the radiometer and the atmosphere.

Hardware Based Solution to Correlator Drifts: Phase Modulation

The hardware-based solution places a phase modulator in one arm of the local oscillator
stage. The phase is square-wave chopped from 0 to m at 1024 Hz. This has the effect of

modulating only the correlated component of the RF fields before the mixers at an AC

91



frequency which is much higher than the 1/f knee of the total power channels, dominated
by the HEMTs themselves. The signal out of the correlator is then demodulated at the
chop frequency of the phase modulator using standard lock-in techniques.

POLAR’s implementation of the phase modulation technique employs:
e an analog multiplier (MITEQ Model DBP0O112HA2)
e an electronic 0° — 180° phase shifter (Pacific Millimeter Products)

e a switch-referenced synchronous demodulator detector and integrator (Analog De-

vices AD 630)

The implementation of the technique requires not only multiplication but also phase
switching and phase-sensitive detection (lock-in). In doing so, we eliminate the A% + B?
terms in equation 4.5 which correspond to the sum of the total power in both polarizations.
These signals appear at DC, and do not survive the lock-in process. The output of the
lock-in detectors is proportional to only the correlated component common in each arm of
the polarimeter. In practice, the phase of the square-wave chop signal switch is slightly out
of phase with the signal appearing at the lock-in signal input. This undesired phase shift
is caused by propagation delays in the system, and any parasitic reactance (inductance or
capacitance) in the multipliers themselves, or in the subsequent stages of audio-band signal
conditioning. We AC couple our correlator signals before amplification in the second gain
stage of the pre-amps. We do not low-pass filter the correlator signals in the audio pre-
amp; if we did the correlator signal would appear as if its high-frequency components were
rolled-off (the high-frequency “corners” of the ideal square-wave modulated signal would
be slightly rounded-off, equivalently introducing a phase shift prior to lock-in detection).

The parasitic reactances mentioned above effectively convert a portion of the sig-
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nal’s in-phase component to an 90° out-of-phase component (which we call “quadrature-
phase”). If we used only one lock-in, referenced to the nominal “in-phase” of the phase
switch, we would lose information on the correlated component of the signal. To recover
this information, we utilize two lock-in detectors per correlator, one in-phase with the
chop, and the other quadrature-phase component. See figure 4.9.

Once the phase shifter is supplied with its square-wave current chop signal the actual
choice of lock-in technique is either hardware based or software based. The common
problem is to find the optimum reference phase for the phase sensitive detector, which is
implemented in hardware or in software. A poor reference waveform will reduce the signal-
to-noise (SNR) of the system considerably (see the following subsection for a discussion
of the lock-in amplifier’s SNR). The lock-in signal, being a complex quantity, has an
associated modulus and phase. The real and imaginary components must be completely
determined to recover the underlying signal.

Both approaches have advantages and disadvantages. The software based solution
acquires the signal directly from the pre-amps, and then performs a best-fit to the phase
of the (known) phase-shifter drive signal. This technique has the advantage that the

reference frequency is easily modified as systematics warrant. Its main disadvantages are:

e there must either be a significant amount of correlated signal such that the correlated
component’s modulation is easily resolved from the noise; or, in the case that the
real-time correlated signal’s phase is buried in the noise, the phase solution obtained
from a source with a large correlation between arms must be trusted to be constant

between calibrations (which may be days apart).

e for a high frequency phase switch, the detector output must be sampled faster than at
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least twice the phase-shift frequency. The phase switch frequency is usually a factor
of ~ 10 higher than the 1/f knee of the first-stage amplifiers, which in POLAR’s
case would require a sampling frequency of 2 x 10x ~ 5Hz~ 100Hz. For the roughly
10 channels of data and housekeeping this results in an effective data rate of ~ 100
Kb/S or roughly 1 GB per day which is rather impractical to reduce, unless the
software is performed in real time. However, with 8 data channels sampled at 1

KHz, this too is impractical.

Lock-In Detectors

To implement the “hardware-based solution”, a custom lock-in detector was constructed.
The detector is centered on the AD630 Synchronous Modulator/Demodulator chip. Sig-
nals leave the pre-amp card and enter a separate RF tight box containing six separate
lock-in circuits. The number “six” corresponds to phase sensitive detection of three cor-
relators, each with two reference phases, “in-phase” and “quadrature-phase” . After mul-
tiplication of the pre-amp output signal by the two reference waveforms, the resulting
product is low-pass filtered at 5 Hz, which also serves as our anti-aliasing filter for our 20
Hz DAQ sampling system.

For diagnostic purposes, we have an additional variable-phase reference signal which
can be used in place of the fixed phase reference signal into the AD630. This gives us
the flexibility to “tune” the phase of the reference signal such that the quadrature phase
component of the correlator output can be nulled. For observations, we reference the
lock-ins to either the fixed in-phase or quadrature-phase waveforms. Our phase-switch
driver circuit produces both the in-phase and quadrature phase reference waveforms. We

are able to change the phase of the reference waveforms with respect to the physical chop
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waveform by discrete steps of 0.18°. This technique allows us to maximize the signal-to-
noise ratio of the correlator channels as well as to remove any signal component from the
quadrature phase detectors providing us with extremely powerful monitors of the noise of
the correlator channels.

We have measured the complex transfer function of the pre-amps to determine both
their voltage gain and relative phase shift. The latter is especially important in the case of
our phase-sensitive detection scheme outlined above. Any use of signal-conditioning ele-
ments, such as filtration, of the signal out of the pre-amps would contribute to a nontrivial
phase shift between the correlator output and the signal waveform input to the AD630’s.
Such a phase shift would be disastrous if we were only measuring the real component of
the lock-in signal. Our dual-reference phase approach solves this problem of course.

The output of the lock-ins with terminated inputs are measured to determine their
offsets. This is done in addition to the corresponding measurement for the pre-amps.
Furthermore, the transfer function of the pre-amps must be fully characterized in order

to determined the effective integration time for each channel.

4.6.4 Electronics Box and Housekeeping

Thermal regulation of the RTRB is essential to the stability of the instrument over
long periods of time. We have identified a number of components which are extremely
temperature-sensitive. The most sensitive components are the non-linear devices such
as the mixers/multipliers, and especially the Gunn Oscillator. To regulate the tempera-
ture we have constructed a thermal control circuit which employs feedback from a sensor
inside the RTRB. This control circuit is centered on a commercial microprocessor-based

PID control (OMEGA ), and can regulate up to 300W of power applied directly to MINCO
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Heaterfoil pads. The power and control of our approach allows us to regulate the temper-
ature of all elements in the RTRB to better than 100 mKgass per-day.

We also monitor several other housekeeping signals, including: 4 Lakeshore # 10 tem-
perature sensor diodes inside the cryostat (on the HEMTS, cold plate, and feed horn) and
the dewar pressure. We employ a multi-stage power regulation approach, using precision
voltage regulators and reference throughout the RTRB; all signal circuitry (HEMT bias

cards, post-detection electronics, etc.) are double regulated and EMI shielded.

4.6.5 Post-Detection Electronics: PDE

The pre-amplifier is the final component of the signal chain for the total power detectors,
and the penultimate component for the correlators as they are detected via the lock-in
circuits described above. To minimize the susceptibility to electromagnetic interference
(EMI), the signals are amplified and filtered before leaving the radiometer box. A single
Vector card contains 5 identically constructed circuits, a single one of which is displayed
in figure 4.9. The card is mounted in close proximity to the detectors and shares the same
thermally regulated environment.

The first stage of the pre-amplifier consists of the gain stage set by a low-noise Analog
Devices OP-27 Precision Op-Amp. The gain is adjustable by selection of the feedback
resistor. Following the gain set stage is a 4-pole, 5Hz Frequency Devices Anti aliasing
filter. The bandpass of the anti-aliasing filter also serves to set our fundamental integration
time, 7. In order to measure the effective integration time we calculate the power spectral
density (PSD) of the output of the pre-amplifier circuit with a 50 terminated input. The
effective integration time is the time lag between which samples from the detector can

be considered independent. Denote the voltage transfer function of the pre-amps/anti-
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Figure 4.9:  Post-Detection Pre-amplifier circuits for the total power channels (top) and the
correlator channels (bottom). The overall gain of the pre-amps can be switched between low-gain
(during calibration) or high-gain (during observations). The gain is controlled by a TTL signal
supplied by the data acquisition system.

aliasing filters as = H(w). The power spectrum of H(w) is Sy(w). Then we have that:

2

1 1 °° o 2
/_Oo Sy (w)dw = R0) /0 Sy (w)dw = 2Av = =

mpsp  Su(0)

We have that 7 = 27pgp. To convert Noise Equivalent Voltage (NEV) in [V/v/ Hz] to

[V/s] we have: NEV = % where S is the PSD with units [V2s]. So if we are measuring

the PSD and converting to NEV we have NEV =

\/27‘5;?, justifying the hitherto ad hoc

practice of dividing PSD’s by spurious factors of v/2.

4.6.6 DAQ Hardware and Software

The data acquisition system is composed of three main sections:
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e National Instruments DIO-MIO-16, 16 Bit Dagpad Analog-to-Digital Converter

Module
e Compaq Pentium II notebook computer
e National Instruments Labview software

The main hardware constraint is that all components must rotate with the polarimeter,
eliminating the use of a standard desktop computer for acquisition and storage purposes.
The Dagpad is a compact 16-Bit, 16 channel (single-ended) analog-to-digital converter
(ADC). It samples all 8 data channels as well as 8 housekeeping channels at a sampling
rate of 20 Hz, which over samples the outputs from the detectors by a factor of 2 since
the Nyquist frequency for our anti-aliasing filters is 10 Hz. The Daqgpad interfaces to
the notebook computer via a 1m parallel port interface cable. The Labview software is
custom written to sample all channels at 20Hz. By sampling and storing all of the data in
close physical proximity to the detectors, we minimize corruption due to RFI which might
otherwise occur if the ADC took place off of the rotation platform.

The data files are indexed by calendar date, with several hundred files stored per day.
After one day of acquisition, the data files are transfered from the rotating notebook
computer to a desktop computer via a local area network Ethernet connection. The coax
Ethernet connection leaves the rotating electronics box through 2 channels of a 10 channel

shielded slip-ring (5th Dimension). No RFI is noticed during data transfer.

4.7 Rotation Mount and Drive System

Since POLAR’s recovery of the Stokes parameters is based upon their modulation under

rotations, we have constructed a 30” diameter bearing platform and AC motor system to
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rotate the cryostat at 2 RPM (~ 30mHz see figure 4.10).

Cryusbut—-_,_ﬂ____ﬁ_‘

Azmuth Metor

Encaodar

<1 Cryomoler—q:"
L |

Slip Ring [

Figure 4.10: Rotation mount, showing motor, bearing, and encoder position. The wheels allow
for fine positioning of the instrument on its platform, and are removed once the instrument has
been aligned.

The AC motor is smoother than a stepper motor approach(which we tried originally),
and is ideal for continuous rotation such as ours. The dewar bearing rides on a 0.100”
stainless-steel ball-bearings in a lubricated channel, which contains about 400 balls. The
motor pulley has a 1000 bit/rotation TTL compatible relative angle encoder which reads
out the rotation angle. A custom made one-bit absolute encoder is triggered once per rev-

olution at a specific angular position which serves to set the zero angle for the polarization
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recovery.

4.8 Instrument Bandpasses

We present here a measurement of the bandpass of the instrument. For this measurement,
an HP 83751 A Synthesized Sweeper is used to produce a swept signal from 13 to 18 GHz,
which is subsequently doubled in frequency by an active doubler (producing 26 - 36 GHz)
and fed into a power spitter. The outputs from the power splitter are, of course, 100%
correlated, and these signals are fed into the waveguide input ports of the RTRB. This
allows us to measure the bandpass of all warm RF components. The correlated signals
are attenuated by 60 dB to provide a power level similar to that obtained when viewing
the sky.

To illustrate the bandpass measurement and phase chop method we refer the reader to
figure 4.11 which shows a 600 MHz section of the bandpass of correlator J3 before lock-in
detection. The phase switch is chopped at 1 KHz, causing sign reversal of the correlator
DC output. This signal is subsequently fed into the lock-in detectors, and the DC level
out is recorded to measure the response as the input signal is swept in frequency. All
three correlator channels are measured this way, and the resulting bandpasses are shown

in figure 4.12.

Table 4.5: Radiometer Centroids, Bandwidths, and Observing Sensitivities (Tan: ~ 15K)
H Channel | v.|GHz] | Av[GHz| | Sskymk:—% H

TPO 31.9 7.8 40.0
TP1 30.8 8.0 10.1
J3 28.0 1.2 8.5
J2 31.5 2.7 7.8
J1 35.0 2.9 4.5
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A 600 MHz section (out of 1.2 GHz) of correlator J3’s band is shown. The
modulation is caused by a square-wave phase chop of the local-oscillator signal. The low-frequency
oscillation is the result of gain and phase variations across the band.
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Figure 4.12: All three correlator bandpasses are shown. There is significant response to correlated

signals over the full K, band.
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Table 4.6: POLAR K, Band Radiometer Components

|| Device | Manufacturer | Model ||
Circular-Square Transition Custom Microwave —
OMT Atlantic Microwave OM2800
HEMTs NRAO A29 & A30
Warm RF Amps MITEQ JS426004000-30-8P
Mixers MITEQ TB0440LW1
Gunn Oscillator Millimeter Wave Oscillator Co. —
Warm IF Amps MITEQ AFS6-00101200-40-10P-6
Triplexers Reactel —
Correlators MITEQ DBP112HA
Total Power Detectors Hewlett Packard HP 8474C
Lock-In Amplifiers Analog Devices AD630

K, band Phase Switch

Pacific Millimeter Products

Dewar

Precision Cryogenic Systems

Cryocooler

CTI Cryogenics

8500 Compressor, 350 Cold Head

Table 4.7: POLAR Observing Parameters

|| Parameter | POLAR 1999 ||
Declination of Drift Scan 43.03°
Beam width 7°
Fractional Sky coverage 255° x T°FWHM ~ 5%
Rotation Rate 0.03Hz
Point Source Sensitivity 0.7uK Jy !
Post detection Bandwidth 5Hz
Sampling Frequency 20 Hz
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Chapter 5

Calibration

5.1 Calibration desiderata

An accurate calibration is essential to the success of the POLAR experiment. The ideal

calibration source will allow us to determine the following quantities of interest:
e voltage-to-antenna temperature conversion coefficient for each channel
e system noise temperature for each channel

e minimum detectable polarized signal in one second of integration, the Noise Equiv-

alent Temperature (NET), for all detectors
e offsets and long-term stability of our instrument

An ideal source would be a polarized astrophysical point source with enough power to
be seen in “real-time”. This would allow real-time beam-maps as well as calibration. We
can estimate the necessary power such that a 5-0 detection is made in the fundamental
0.2 s integration period of the receiver back-end — which would be bright enough to see

clearly in real-time.
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The antenna temperature seen by POLAR’s total power detectors when viewing a

source of flux density S(v) [Jy] is given by:

2

Tv)= S(l/)m

x 107 2°K, (5.1)

where k; is Boltzmann’s constant and €2, is the solid angle of the main beam. For
POLAR, Qp = 0.047sr, which implies an antenna temperature of 0.7uK for a 1 Jy source.
Note that equation 5.1 holds for a single mode detector for a single polarization, as indi-
cated by the presence of the factor “2” in the denominator. For a 10 — ¢ detection, with
a receiver whose NET ~ 3 mK /sec , a source of antenna temperature T4, ~ 33mK is
required. This is equivalent to a 335 Jy source at 31 GHz. For comparison, Cas-A, the
brightest known radio source, has a flux density of 206 Jy at 31 GHz. We note that this
assumes we are measuring a change in antenna temperature by the source, not a polarized
signal. Since the polarization of Cas-A is less than 10% at 31 GHz, for the polarization
signal to be detected in real time would require a signal ten times larger! Clearly, we
cannot expect to use an astrophysical point source for calibration of POLAR. We note
here, for possible future relevancy, that Madison, W1 is almost ideally situated for a zenith
scan with a smaller beam size, for Cyg-A, the second most powerful radio source, lies at a
declination of § = 41°, placing it only 2° from the zenith. The polarization properties of
Cyg-A have been measured at arcsecond scales at 15 GHz to be ~ 10%, decreasing due to
Faraday rotation to 2% at 5 GHz [84]. A sub-degree polarization experiment at 31 GHz

could detect this object at the several—o level.
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5.2 Twisted-Cold Load (TCL) Calibrations

For our initial laboratory calibrations we have developed an internal calibration method
which produces a correlated electric field at the input to the orthomode transducer (OMT).
The intensity of this field can be varied above 30 K, and produces a polarized signal at
the input to the OMT which calibrates the entire radiometer from the feedhorn on. We
call this calibrator the “Twisted Cold Load”, or TCL, and it allows us to determine
the radiometer’s noise temperature, noise equivalent temperature (NET), and calibration
coefficients.

The TCL is constructed from a section of circular copper waveguide, with castable
Eccosorb epoxy CR-114 coated walls. The Eccosorb coats the walls in such a way as
to maximize the number of reflections/absorptions for a wave incident on the calibrator.
To accomplish this an “inverse-spike” geometry was adopted. The measured return loss
across the K, band better than -30 dB. A section of circular stainless-steel waveguide is
attached between the load and the OMT to act as a thermal break, and a copper strap
connects the load to the 20K cold stage (see figure 5.1).

The load is polarized by coupling its circular output flange to a WR-28 circular-
to-rectangular transition, which acts as a polarizing filter. Following is a co-aligned
rectangular-to-circular transition which then couples to the circular-to-square transition
which feeds the OMT. By rotating the E-plane of the back-to-back transitions 45° with
respect to the square aperture of the OMT we are injecting in a 100% correlated field into
each port of the OMT. This allows us to have a temperature controlled thermal source,
which mimics the effect a 100% polarized source would produce in our correlator channels.

The rotation by 45° motivates the name of the device: the Twisted Cold Load (TCL).
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Figure 5.1: The Twisted Cold Load Calibrator (TCL). The antenna temperature of the load is
varied by heating an Eccosorb loaded section of cylindrical waveguide. The back-to-back circular-
to-rectangular waveguide transitions polarize the load along the E-plane of the rectangular waveg-

uide. This plane is rotated along the main-diagonal of the OMT to produce correlated fields in
the E and H plane output ports of the OMT.
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This rotation affects the power (= antenna temperature) seen by both the total power
detectors and the correlators. For the total power detectors, the use of the rectangular
section of waveguide converts the dual-polarization circular waveguide into one which only
propagates a single-mode. Because the load itself is unpolarized, and we accept only one
polarization, we have cut the power into the OMT from 2k;Tj0ad AVrF t0 kpTioad AVRE.
The effect of the 45° twist is that the amplitude of the field amplitude delivered to each
total power detector is reduced by cos45° = % Thus a change in load temperature
ATjpaq produces a change in the total power detected temperature of A—TQL‘M‘.

For the correlators, the reduction in power is the same factor of two. The correlators
multiply the field amplitude in each of the polarizations. Each polarization receives %

of the field produced after the mode conversion. Multiplying these two factors in the

correlators produces the same factor of two reduction as for the total power detectors.

5.2.1 System Noise Temperature

There are several methods to compute the noise temperature of the radiometer using the
TCL or with several different temperature external loads. While the former method pro-
duces lower and more stable temperatures, the latter is much faster to implement, and
also incorporates the effect of the feed horn. We have tested the TCL method vs. the
ambient temperature external load method to ensure consistency. Further tests using the
TCL are planned in order to obtain higher precision results at temperatures lower than
the lowest temperature external load available: 77K. However, the noise temperature cal-
ibration results quoted in this thesis are obtained from the ambient temperature external

load method.
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Method 1: Y-Factor Measurements

For the total power channels we use a common technique to obtain a first-order estimate
of the noise temperature of each arm of the radiometer. Given two load temperatures, Ty
and T , and the corresponding DC voltages produced in the total power detectors, Vi
and Vg, the y-factor is defined to be: y = T‘% = %gi—;ﬁ Solving for the receiver noise

temperature, Ty, we find:

VeTw — Vale
Tn — g — "HZC
N=F Ve Vo

where 0 = % for the TCL and g = 1 for the ambient temperature calibrations.

Method 2: Bandwidth Technique

Knowing the bandwidth Av of the system, the voltage fluctuations AV,,,s in an integra-
tion time 7, and the calibration coefficient, g in [V/K] allows us to estimate the noise

temperature of the receiver via the radiometer equation:

Tsys = Rg_]AVRMS VAvT — ﬂ,rloadv (52)

where = 1 for the total power channels, and x = /2 for the correlator channels, and
8= % for the TCL and g = 1 for the ambient temperature calibrations.
Method 3: Linear Intercept Technique

For the two total power channels and the three correlators we can use the RMS noise
on the DC detector voltages to determine the noise temperature. This method has the

advantage that it does not require the knowledge of the radiometer’s bandwidth. The
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noise model for the total power detectors is:

ATrurs = TSYSZ?Zload (5.3)
- OdTlocwl + v (54)

while for the correlators we have:

ATrys = \/i\/ (TSYSOTSAYVSTl +6T10ad) (5.5)

= YT}oad + 0. (5.6)

Again, 8 = % for the TCL and 8 = 1 for the ambient temperature calibrations.

We see that for both the total power channels and the correlators AT,.,,s is a linear
function of the load temperature. The x-intercept of these lines will be equal to the
negative of the system noise temperature. We note again that these results apply to the
ambient load method, not the TCL method. For the TCL method it is necessary to
incorporate the effect of the single-mode waveguide which reduces the load temperature

seen by the detectors by a factor of two.

Noise Temperature Contribution from Lossy Components

The system noise temperature is dominated by the noise temperature of the HEMT am-
plifiers. However, the contribution of the following room-temperature amplifiers, as well

as loss in components preceeding the HEMTS cannot be neglected. The dominant lossy

109



elements preceeding the HEMTSs are the two PAMTECH cryogenic isolators and the de-
war’s vacuum window. The isolators’ exact physical temperature is unknown, but we may
estimate them to be at ~ 40K, which is the physical temperature of the horn, so this is a
worst-case estimate. Their insertion loss is: L = 1/€;50 = 0.1dB = 0.03, where €4, is the
transmission of the isolator. The loss of the vacuum window is conservatively estimated
at 1%. The noise contribution from amplifiers in series with the HEMTs are reduced by
the gain of the HEMTS [20], which is why we put our best amplifiers first in the signal
chain. The room temperature MITEQ amplifiers have noise figures of F' = 2.5dB = 1.8
which translates to a noise temperature of (F' — 1)290K = 232K.

The total estimated system noise temperature including all of these additional factors

is:

1 1
T, = T —T —1)T; — 1) T i
n HEMT + oot MITEQ + (eiso ) iso T (Ewmdow ) window
232
= 65K + %K +0.03 x 40K + 0.01 x 300K
~ 70K,

where the gain and noise temperature of the HEMTS have been taken from their

specifications after construction at NRAO in 1994. This number agrees quite well with

the measured values of T}, discussed below.

Results of Noise Temperature Measurements

Table 5.2.1 displays the noise temperature of the system obtained from the correlator

channels quadrature-phase component using the linear intercept method outlined above.
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Table 5.1: System Noise Temperature Obtained From Correlator Channels Using Linear
Intercept Method

Channel | T from Linear Intercept
J1 64.7 K
J2 79.0 K
J3 77.4 K

A plot of the y-factor measurements for the three correlator channels is shown in
figure 5.2. This figure allows us to obtain the system noise temperature derived from each
correlator (x-intercept) as well as an independent measurement of each correlator’s NET
(y-intercept). Some compression can be discerned for the highest ambient temperature
load used (300 K). Higher precision measurements using the TCL will be performed to
obtain the lowest possible uncorrelated load temperatures (~ 30K). The values of ATguss
for correlators J1 and J2 agree quite well with the measured values from the PSD data
discussed at the end of this Chapter. Correlator J3 shows the highest level of compression
and not-coincidently, obtains the highest NET — a value inconsistent with the NET derived

from its PSD.

5.3 Wire Grid Calibrator: WGC

While the TCL calibrations described above are the most accurate method to calibrate the
detectors, the TCL does not accurately represent the true configuration of the radiometer
as used during observations. The absence of the feed horn and vacuum window is a
striking shortcoming of the TCL technique. Additionally, the TCL calibration method is
time-consuming as it requires complete disassembly of the cryostat to install. Therefore,
we require a calibration method which is easily implemented, and representative of the

observations we are attempting to perform. The conventional approach to these issues for
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Correlator AT, vs. Load Temperature
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Figure 5.2: Y-factor measurements of all three correlators are shown. The dash-dot, dash, and
dotted lines are the best linear fits to the corresponding correlator data. The results obtained
from these measurement for J1 and J2 are consistent with the corresponding values obtained using
the other two methods discussed in this Chapter (PSD and bandwidth methods). All correlator
channels appear to suffer some compression. Correlator J3 displays the greatest compression,
and the NET derived from this measurement is not consistent with that obtained from the PSD
measurement discussed at the end of this Chapter.
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a polarimeter is to employ a wire grid calibrator (WGC) [66], [85], [86]. The WGC is a
passive source which can provide electromagnetic fields which are correlated in each arm

of the receiver, and is placed outside the cryostat for rapid implementation.

Cold Lood or Sky

Warm
Lood

T

!

Figure 5.3: Side view of wire grid calibrator (WGC) in place during calibration.

\‘DPy Mitrogen

The grid functions by transmitting thermal radiation from a blackbody source in one

polarization, and reflecting thermal radiation from a second blackbody source (at a dif-
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ferent temperature) into the orthogonal polarization, see figure 5.4. For the POLAR
calibrator, the cold load is located above the grid and produces fields Fq and Hi, and
the warm load produces fields Fo and Hy. The grid’s wires reflect fields polarized along
their axes and transmit fields orthogonal to their axes. The result is that, ideally, H; is
transmitted and Fs is reflected into the feed-horn producing, as we will show, a 100%
polarized diffuse source with an antenna temperature equal to the temperature difference

between the two loads.
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Figure 5.4: Geometry of the Wire Grid Calibrator

Our wire-grid calibrator! was fabricated by deposition of copper onto a 50 mil mylar
substrate. The wires themselves are 0.008” wide with 0.008” spaces. For support the grid
is sandwiched between Dow Corning “pink” Styrofoam sheets (emissivity of ~ 1%), and
the sandwich is mounted at 45° to the aperture plane. See figure 5.3 for the orientation

of the grid during calibration. The grid has an integrated bearing system which allows it

"Designed by Chris O’Dell.
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to rotate directly over the vacuum window. This allows us to keep the dewar stationary
and simply rotate the grid to calibrate POLAR.

As shown in Chapter 3, the properties of the source function, 4(v), defined in Chapter
4 determine the output voltage recorded by the correlation channels. The function §(v)
depends on the coherence of the electric fields produced by the thermal radiators. How-
ever, we only know the antenna temperature of the hot and cold loads, not the electric
fields produced in the x and y directions. Fortunately, as we will see, only the antenna
temperatures are needed in the end.

The resulting field seen by the feed-horn is the superposition of the transmitted field
Hj, and the reflected field Eg, In terms of the (z/,y’) basis of the feed-horn and OMT and
the (z,y) basis of the rest frame of the WGC, the electric field produced by the WGC as

the polarimeter is rotated by an angle « is given by:

Ey = E (t)cosa+ Ey(t)sina

Ey = —FE.(t)sina+ Ey(t) cosa. (5.7)

The output of the correlator from the coherence function given by 3.11 is:

Vout o <E:1:’(V)E;’ (V)>

= ((Ez(t)cosa + Ey(t)sina)(—Ez(t)sina + Ey(t)sina)), (5.8)

with the load fields E, E, given by:
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Ey(t) = Ey, cos[vt + dy(t)]

E.(t) = E,, cos[vt + ¢4(t)]. (5.9)

We obtain:

Vour X (—Eg(t) cosaE,(t)sina + Ey(t)sinaky(t)sina)
o« (EyE, — E,E})sinacosa
o sin2a[(E, E}) — (E.E)
o @ sin 2«

=v(Ty — T) sin 2

where v converts antenna temperature (measured by the radiometer) to intensity (the
units of the Stokes parameter, @@). Note that at o = 0°,90°,180°,270° the correlators
have zero output as the fields are completely aligned along only one port of the OMT and
thus do not produce correlated fields between the two arms.

Ideally, the grid would reflect T},; from the side in 100% horizonal polarization and
transmit Tr,q from the top in 100% vertical polarization, resulting in Vi o< ¥(v)(Teotd —
Thot) sin 2. In practice, due to loss and reflection, the grid is not perfect and instead
we observe the following antenna temperatures at the feed-horn in the two orthogonal

polarizations [85]:
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Table 5.2: Estimated Properties of Grid and Loads Used For Calibration

Property Value
7| 0.995
] 0.02
t, 0.95
Tyy 290 K
ATy = Tso0x — Topy | 256 K
ATy = Toox — Trrie | 196 K

Thotr = 7| [(1 = 70)Thot + 1iTeg] + (1 = 1)[(1 = 71)Teota + 11Ty (5.10)

Teotgr = tL[(1 = r0)Teotd + 1iThg] + (1 = t1)[(1 — 1) Thot + 71 Thg], (5.11)

where: 7| is the grid’s reflectivity to radiation polarized parallel to the wires, ¢ is the
grid’s transmission for radiation polarized perpendicular to the wires, r; is the reflectivity of
the load, and Tj, is the effective background temperature of the radiation field surrounding
the calibrator. In the above equations, we have neglected the effects of the emissivities
and dielectric constants of the mylar and Styrofoam.

We have two pairs of temperature differences with which to calibrate POLAR. Using
a 300 K load (in reflection) and the sky (in transmission) we obtain a polarized antenna
temperature of 256 K. Using a 300 K load (in reflection) and a 77 K Liquid Nitrogen load
(in transmission) we obtain an antenna temperature of 196 K. Here we have assumed the
properties of the grid as listed in table 5.2.

A plot of a calibration run is shown in figure 5.5. The sinusoidal oscillations are the
result of rotation of the grid over the feedhorn. The first set of oscillations corresponds to
the 300 K Load and the sky and the second set corresponds to 300 K Load and the 77 K

Liquid Nitrogen Load.
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Figure 5.5: Voltages out of correlator J2 and a total power detector during calibration with the
Wire Grid Calibrator (WGC). The middle figure shows the voltage out of J2’s in-phase lock-in
detector, the bottom figure shows the corresponding voltage out of J2’s quadrature phase lock-in
detector. The various temperature loads are indicated at the time they are applied. The first set
of oscillations corresponds to a polarized temperature obtained by using a 300 K load and the sky,
which produces 256 K signal. The second set of oscillations corresponds to a polarized temperature
obtained by using a 300 K load and a Liquid Nitrogen Load producing a 196 K signal. Note the
suppression of the correlated component in the quadrature phase detector, and also note that the
noise envelope of that detector is a function of the load temperature making it an effective noise
monitor.
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5.3.1 Gain Matrices

The grid furnishes us with a well-defined thermal load which is 100% polarized, which is
exactly what is needed to calibrate POLAR’s voltage output in terms of antenna tem-
perature. Following [85] we model the output of the polarimeter versus rotation angle as
a linear combination of the Stokes parameters at the feed horn. The output voltage is

modeled as a vector ¥:

Uy Jyy  Gyz  9yQ Try Oy
D=\ v | = 92y G2z 920 Try |+ | 0z | + 17 (5.12)
vQ 9Qy 99z 9@/ \Trq 0Q
or
v=gTlf+0o+n (5.13)

where & denotes the gain matrix, (TF) is the vector of actual antenna temperatures
produced at the feed by the grid, and 6 and n , respectively, represent offset and noise
contributions to v. Ideally, § would have only on-diagonal elements. The off-diagonal
elements of § correspond to various non-idealities of the instrument which will result in
offsets in our measurements. We will elaborate on these terms in the following.

In practice, the grid is placed directly over the feedhorn aperture formed by the vacuum
window and rotated while the polarimeter is held fixed. The resulting vector of voltages is
recorded and a least-squares fit is made to the data using the model of equation 5.12. The
gain matrix parameters, including the off-diagonal cross-talk elements, and the offsets are

recovered for each calibration run.
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5.3.2 Calibration Using the WGC

With the antenna temperatures of the loads given by equations 5.11, The voltages out of

the two total-power channels and the correlator channel are then:

vy (@) Gy Te + 9yaTs + 9y (Thotr — Teotar) sin 2ac + oy,
v=| va(@) | = | 9ayTe+ GeaTs + go@(Thor — Teotar)sin2a + o, | +n  (5.14)
vQ(a) 95QTe + 920Ts + 90Q(Thotr — Teotar) sin 2a + og
where
T, = Thor €08> a + Topp sin o
and

Te = Thor sinfa + Teotd cos®

To recover g, we first integrate long enough that the noise term, 7 is negligible, and
then measure the offsets, 0. Then we can invert 5.14 to obtain g. Since we have two pairs
of temperature differences we can measure the calibration constants as a function of this
difference and check for linearity. Our two loads produce effective polarization antenna
temperatures of 256 K and 196 K and it is verified that the calibration constants are equal
to better than 10% over this range. The linearity of the correlators over this wide range in
temperatures, and at such high temperatures, suggests that the radiometer is linear over
6 dB, which is quite impressive for an instrument with ~ 100 dB of RF gain and which

uses diode-based multipliers to implement the correlation radiometer technique.
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5.3.3 Results of WGC: Gain Matrices and Systematic Effects

We recover three separate gain matrices; one per correlator:

In the following we show the gain matrix G in [K/V]; Gi; = 1/gi;. The off-diagonal
elements are indicated by their relative size compared with the corresponding on-diagonal
terms, i.e., for a given correlator G, = fGgqg, where f is given as a percent. For all

three correlators, J1, J2, J3 we obtain:

-96.4  3.8% 6.1%
Gn=| 83% 59.3  —6.7% (5.15)
6.1% —6.7%  55.8
-96.4  3.8% 8.6%
G2 =] 83% 59.3 —9.2% (5.16)
8.6% —92% 293
-96.4  3.8% 8.6%

Gys=| 83% 593 —9.3% (5.17)

82% —93% 555

The entries of the gain matrix g tell us a great deal about the performance of our
instrument. The on-diagonal elements of G, (Gga, Gyy,Ggg) dominate the matrix; they
are the terms which measure the system calibration in [K/V].

However, to the experimentalist, the off-diagonal elements are nearly equal in im-
portance for they encode information regarding the system’s imbalance, cross-talk, and
imperfect isolation between polarization states. All of these effects result in systematic
differences between the actual polarization, and that which is measured by POLAR. These

effects are known as “offsets”, and may be incorrectly interpreted as celestial signals if
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they are not removed or are unstable in time.

There are two independent effects responsible for the off-diagonal elements, corre-
sponding to the two different off-diagonal elements g, = gy and g, = gyg. Let us
examine each of these effects in detail. First we will analyze the effects of g, # 0, so we
set gy = ny = 0y = 0. Then the first non-ideality, g, (or equivalently, g, ), implies that
at a = 0, when we should only see T}y, we actually observe vy = gyyThor + GyzTcold -
So the non-ideality g,, has introduced an offset in the total power outputs. We can now
identify the terms which contribute to the total offset in the total power channels. First,
we make some preliminary definitions. We define the isolation of the OMT to be the
fraction of transmitted power into one rectangular (polarization) port which appears at
the other (orthogonal) port. The main contribution to the total power offset is from cross-
polarization effects in the horn or the OMT 2 These terms contribute to the Jzy terms
in the gain-matrix equations used for calibration. A similar calculation shows that the
contributions to the correlator off-diagonal elements, e.g., gzq, are primarily attributed
to gain differences in the horn’s E and H plane power response, as well as gain imbalances
in the two HEMT amplifiers.

To address these problems we have constructed a feed horn with a high-level of sym-
metry between E and H planes, along with a low level of cross-polarization of ~ —30dB,
see Chapter 4. The OMT also has a high degree of E/H polarization port isolation;

measured (\Sg,’;ﬂQ ~ —30dB). Though its cross-polarization has not been measured, it

2 Although rarely refereed to as such, cross polarization of the OMT is a well-defined concept; distinct
from the more familiar figure-of-merit: isolation. Conceptually, we can consider the actual OMT to be
an in-series combination of a feed-horn (with non-vanishing cross-polarization) and an ideal OMT (i.e.
one with no cross-polarization). Then, the cross-polarization of the actual OMT is that of the series-feed.
This definition asserts that no practical measurement of a horn-OMT combination can decompose the
cross-polarization into components definitively associated with either sub-component.
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is believed that it is less than -30dB. Gain imbalances are minimized by installing fixed
coaxial attenuation in the IF band, just prior to correlation, to better than 1dB.

From 5.15, 5.16 , 5.17 , we see that the off-diagonal elements are uniformly less than
10% of their on-diagonal counterparts. This indicates that there are correlations between
the correlators and the total power detectors. This correlation causes the correlators to
exhibit all of the undesirable traits of the total power detectors: decreased sensitivity and
1/ f behavior as demonstrated in section s:psd. These effects are coming in at a low level,
however. Further investigation is needed: multiple calibrations over longer periods of time
will provide us with estimates of the errors in the gain matrices as well as indicating the

long term stability of the calibrations themselves.

5.4 Noise Analyses and Noise Equivalent Temperatures: NET's

Once we know the calibration between voltage and temperature, by measuring the voltage
RMS we in turn obtain the temperature RMS. The noise equivalent temperature (NET)
of the detector is the instrument noise as measured in a bandwidth of \/@, which can
be converted to the noise in a one-second integration, ATriss, by dividing by /2. We

have that the noise in an arbitrary integration time, 7, is:

ATrys = NET/\/T. (5.18)

Again, the model of the noise of the total power detectors differs from that of the

correlators. From equation 5.3 for the Total Power detectors:

Tsys + Tioad

NET = ,
vV Av

(5.19)
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while for the correlators, from equation 5.3, we have that:

o \/(TTPO + ﬂoad)((TTpl + ,Tload)
NET =2 A (5.20)

The most naive technique to obtain the NETSs is simply to calculate the RMS of the
time stream in a one-second segment and convert from voltage to temperature. This ap-
proach, however, only applies when the signal is a wide-sense stationary Gaussian process,
as defined in Chapter 1. Of course, the time stream is not pure Gaussian white noise;
the spectrum will exhibit an excess of low frequency power (“ 1/f noise ”). In practice,
low-frequency components in the time-stream will dominate the RMS if they are not re-
moved. This, of course, is the motivation for the modulation of the signal by rotation of
the instrument. A better approach is to compute the power spectrum of the data, and use
it to estimate the RMS. To do this we must first measure the transfer function of the pre-
amplifiers, G(v) . This is accomplished by terminating the input to the pre-amplifier and
recording its PSD. The equivalent integration time of the pre-amplifier circuit is related

to its audio bandwidth by:

b Geuw(0)
a 2AVgudio N 2f(;>o Gaudio(y)dy.

(5.21)

This 7 is the equivalent integration time of the pre-amplifier for each channel to be
used in the radiometer equation.
Given a measurement of a channel’s PSD, S(v) [V2/Hz], and pre-amplifier transfer

function, G(v), we can estimate the variance of the time stream as:

2 2o S(I/)G(l/)dlj.

RO (5.22)
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In practice, a given channel’s PSD is only “white” (i.e. flat) above a certain frequency,
Vinee, and so the lower limit in the numerator’s integral is replaced by this value. The
amplitude of the PSD in the “flat” region provides us with an estimate of the time stream’s
variance without 1/f noise. Making use of the Wiener-Khintchin Theorem from Chapter
4, we can estimate the autocorrelation function (ACF) of the time-stream from the inverse
Fourier transform of its PSD, and evaluate it at zero-lag. Of course this estimate is not
independent of the PSD estimate since the autocorrelation function, R(7), of the time

stream, y(t), is given by:

R(r) = 1 1 dt’ 5.23
() TE”OOT/T/Q y(t' + 7)dt (5.23)

which, when 7 = 0, becomes:

/ > S()G(v)dv
L[ gy = iy - LS50

/2 Jo© Gw)dv (524

Although these two methods are not mathematically independent, it is informative

to evaluate both in practice. Each has its own region of applicability, and each can be

computed independently and then compared to the Fourier transform estimate given by

the other. The ACF at zero-lag of the raw data suffers from contamination due to the

low-frequency drifts apparent in the PSD, and it is therefore more convienient to calculate

the PSD and then invert it to get the ACF. On the other hand, correlations induced in the

time stream by instrumental effects (e.g., the low-pass filter integration stage) are most
clearly visible in the ACF.

For both the ACF and PSD estimations of the noise it is impractical to transform large

sections of data at a single time. Additionally, this method would result in low-precision
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estimates of the desired functions in exchange for high-resolution (in either frequency or
temporal bins). Instead, we choose to break the data sets into several smaller sections
and subsequently average the transforms. This approach also yields an estimate of the

dispersion of the ACF or PSD about its mean value.

Noise After Lock-In Detection

As discussed earlier, after multiplication the signals are detected via a lock-in circuit
centered on the Analog Devices 630 Modulator/Demodulator. The AD630 multiplies the
signal out of the multipliers by a reference waveform, which in our case is a square-wave
generated by a dedicated crystal oscillator. The oscillator generates the phase-switch
waveform as well as the in-phase and quadrature reference phases for the AD 630s.

We note that our lock-in detection after multiplication is essentially an implementa-
tion of the Dicke radiometer, switched at audio frequencies vgyitcn, = 1 KHz. Following

multiplication, the product of the multiplier output and the reference waveform is inte-

1

—aliasing

grated for an amount of time 5 T~ Our signal after the lock-in is effectively the
difference between the multiplier signal at times separated by, roughly, the period of the
phase switch, Tsyitcn =~ 1 msec. The multiplier output at times ¢; and ¢;, is uncorrelated if
[ti—t;| > 1/Avrr ~ 0.1 nsec. So, since Tgyien, > 0.1 nsec the PSD of the lock-in detectors
will be PSD of the noise waveform produced by our detectors when viewing an unpolarized
source will be 2 times larger than the corresponding value without the lock-in detectors.
The signal-to-noise ratio will thus be reduced by a factor of v/2, which is in addition to the
factor of v/2 already included in the radiometer equation for the correlation radiometer.

Relative to an ideal total power radiometer with an NET of ¢ [mK HZ_%], our correlator

channels have post-detection NET’s of 20. For comparison with predictions, as in table
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5.3, we always quote noise estimates after lock-in detection.

We note that the behavior of the noise should be independent of the phase of the refer-
ence waveform supplied to the lock-in. To illustrate this we consider figure 5.7 where the
in-phase and quadrature phase low-frequency power spectra of correlator J1 are shown.
We have developed a phase-switch driver circuit which also produces the in-phase and
quadrature phase reference waveforms. For added flexibility we are able to change the
phase of the reference waveforms with respect to the physical chop waveform by discrete
steps of 0.18°. The quadrature phase detectors provide us with extremely powerful moni-

tors of the noise of the correlator channels.

5.5 Results of Noise Analyses

We begin by referring the reader to figure 5.6 which shows the power spectra of all three
in-phase correlator channels and both total power detectors. It is clear from the spectra
that the correlators are far more sensitive than the total power detectors. The dramatic
1/ f rise in the total power detectors is absent in the correlator channels, and allows us to
slowly modulate the instrument output by rotation of the radiometer at 30 mHz, rather
than at several Hz.

Next, we examine the behavior of the correlator power spectra at low frequencies. In
figure 5.7 we display the power spectra at frequencies comparable to the rotation frequency
of the instrument. Both the in-phase and quadrature-phase components of the lock-in
detectors are shown, and the agreement at frequencies greater than the rotation frequency
allows us to use these channels as noise monitors. The presence of signals at the rotation

frequency and its harmonics is evident in the in-phase detectors, suggesting that there are
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Figure 5.6: The power spectra of all five POLAR data channels while viewing the sky (Tan: =
15K) are shown. The correlator spectra are plotted as solid lines and the total power are dotted.
Several features are evident from these plots. The 1/f behavior of the total power detectors, and
the low-pass filtering of the anti-aliasing filters on all channels above 5 Hz are evident. The CTI
coldhead expansion/compression cycle is at 1.2 Hz, and this feature and its harmonics are clearly

visible in the total power channels. From high-noise (top) to low-noise (bottom) the channels are
TPO, TP1, J3, J2, J1.
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Figure 5.7: The low-frequency power spectra of the lowest noise correlator (J1), in-phase (solid)
and quadrature-phase lock-in detectors (dashed), while viewing the sky (T4, = 15K). The quadra-
ture phase detectors behave as effective noise monitors. The rotation frequency is 0.03 Hz, and
some synchronous signal modulation is evident in the in-phase detector at this frequency and its

harmonics. Absent in the quadrature-phase channels is the 1/f noise rise at frequencies below
0.005 Hz.

correlated signals in the raw time-streams which are being modulated by the rotation of
the instrument. The stability of these offsets over a single rotation of the instrument is
crucial to the recovery of the Stokes parameters.

Overall, the performance of POLAR is quite satisfactory. Table 5.3 compares the
measured NET values and with predictions based upon that correlator’s system noise
and bandwidth. The longer-term performance of POLAR is further elaborated upon in
Chapter 10.

From table 5.3 several phenomena are observed. First we see that the noise estimates
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Table 5.3: NET Estimates from PSD and RMS Compared With Predicted NET

Channel | NET from PSD [mK+/sec] | NET from RMS [mK+/sec| | Predicted from Ty & Av [mK./sec]|
J1 3.6 4.4 2.3
J2 6.5 7.5 2.9
J3 7.1 13.5 4.3

based on the RMS are systematically higher than those obtained from the PSD estimates.
This is to be expected: the RMS suffers more-severely from 1/f contamination, which is
difficult to remove from the time-stream directly. The PSD estimates are taken as the
most accurate estimates of the NET because the 1/f behavior can be easily distinguished
and subtracted.

Next we see that the correlators differ substantially from one-another. This is primarily
attributed to the phase optimization discussed earlier. The variable phase-shifter, shown
in figure 4.1, has been optimized for channel J1, which has the effect of increasing it’s
calibration in [V /K] relative to the other two correlators. At present it is not possible to
individually tune the phase of each frequency band prior to correlation. This feature will
be implemented prior to POLAR’s observing run this winter. We expect to then obtain
the same sensitivity for all three correlators allowing us to obtain a co-added sensitivity

for all correlators of ~ 3mK«/sec/\/§ ~ 1.7mK,/sec.
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Chapter 6

Systematic Effects

Because the anticipated polarization signal is a factor of ~ 10 times smaller than the
temperature anisotropy currently being detected, a thorough understanding of systematic
errors is crucial. Polarization experiments have several advantages, however, that promise
to make this effort possible. First, as shown in Chapter 7, the atmosphere is known to be
polarized only at a very low level, far below the expected level of CMB polarization. Addi-
tionally, POLAR measures the polarization of each pixel in a manner which is (nearly) in-
dependent of neighboring pixels. It does not require comparison of pixels through different
airmasses, and at different times. In anisotropy observations, beam switching often adds
noise and additional chop-dependent signals. Potentially, atmospheric effects will have a
smaller contribution to this type of experiment than to ground-based CMB anisotropy
experiments and will allow longer observation times than have been possible in the past.
Long-term observations are key to understanding and removing systematic effects [87];
[88]. Many spurious instrumental effects have been isolated from astrophysical effects by
long-term integration tests with the horn antenna replaced by a cold termination.

The most troubling aspect of these effects is that they may not be stable in time. For
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the correlator channels, the most pernicious contribution arises from gain fluctuations in
the HEMT amplifiers and in the conversion efficiency and phase stability of the heterodyne
stage. The conversion efficiency of the mixers is dependent on the Gunn Oscilator power
which fluctuates just like an amplifier, thus introducing gain fluctuation, which can be
misinterpreted as signals if some component of the variation is commensurate with the
modulation frequency of the instrument. The phase stability of the oscilator is equally
troublesome [60], since phase fluctuations between the two arms of the radiometer reduce
its effective bandwidth. There are several standard methods to improve the stability of the
heterodyne stage of the receiver, including phase modulation at frequencies of ~ 1 KHz,
and phase-locked loops to stabilize the LO. The latter is quite common in conventional
radiotelescopes, though it is not incorporated in the POLAR K, band system. The former
technique is performed, however, as described in Chapter 4.

In Table 6 we list some important systematic effects encountered in previous polariza-

tion measurements and summarize the solution adopted by POLAR.

Table 6.1: Expected Systematic Effects

Effect Origin Control Method
Mechanical Strain Instrument Rotation Zenith Scan
Magnetic Coupling Rotation in Eearth Minimal Ferrite Components (Isolators Only)
Microphonics Mechanical Vibration Isolation
EMI and RFI Local Sources Shield/Filter
Thermal Variations Diurnal/Environment Temp Control
Sidelobe Pickup Sun/Moon/Earth Low Sidelobe Antenna and Ground Screens

Gravitational effects

A problem with any radiometer that must move in the earth’s gravitational field is position-
dependent stress and strain on waveguide joints, etc. In the experiments of Lubin and

Smoot, for example, observations off-zenith produced polarized offsets which were 1 to 10
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times larger than the resulting upper-limit. POLAR attempts to minimize these problems
by staring at the zenith, so that to first order no gravitational torques on waveguide
components are present. The rotation speed is slow, ~ 2 rpm, and constant so accelerations

on stopping and starting rotation are non-existent.

Magnetic Field effects

A particular concern is the coupling of the Earth’s magnetic field to the radiometer. The
COBE DMR had ferrite Dicke switches which produced a spurious signal at the ~0.1 mK
level (Kogut et al. 1996b). POLAR’s only ferrite components are its isolaters. However,
other components such as amplifiers, etc., may have a low-level magnetic field dependence.
Modulation of these effects can be minimized by maintaining a constant orientation of
rotation axis with respect to the Earth’s field. The magnitude of this effect has been
estimated by generating a ~ 10 Gauss DC field, and was undetectable for a one hour

integration. Future AC field tests are planned.

Microphonics

The effects of vibrations that occur during rotation are reduced by use of HEMTS rather
than high impedance devices such as bolometers, and by the fact that we take data only
while the instrument is rotating at a constant rate, using a smooth-driving AC motor. We
utilize numerous vibration isolation techniques, as described in Chapter 4, to decouple the
primary source of mechanical vibrations: the cryocooler. Waveguide junctions can be a
particular concern as vibration at the interface between waveguide flanges can cause mod-
ulation of the junction impedance, which will be present in the RF signals. To minimize

this effect we have minimized the number of joints by constructing custom manufactured
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waveguide sections, and stiffened all waveguides and support structures.

EMI and RFI

These effects can be controlled by Faraday shielding the instrument and by filtering electri-
cal lines into and out of the dewar. Additionally, we employ two-stages of power regulation
to all components, both inside the dewar as well as in the warm-IF section. RF sources
that occur in the radiometer RF band or IF band are becoming increasingly troublesome.
Of particular concern in the future will be communications satellites operating in the bands
of interest. No RFI from terestrial sources (such as airport RADAR) has been detected
in the data, attributable primarily to the relative isolation of the Pine Bluff Observatory.
Given the small sky coverage and low point-source sensitivity of the POLAR 7° exper-
iment, it is unlikely that there is contamination by any known satellite communication

system.

Temperature Dependent Effects

Temperature variations in the radiometer can be mitigated by active temperature control
and by shielding the instrument from the Sun. The latter function is naturally performed
by the ground shields so that the antenna and receiver are completely shielded. The former
fuction is provided by a two-stage temperature control system. The first, coarse level of
control is provided by a 300 Watt PID controled heating element on the main electronics
box. A finer level of control is provided by a second PID controled, thermo-electric cooler

(Peltier Cycle) which provides 10 Watts of heating/cooling power.
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Sidelobe Pickup and Spillover

The polarimeter must be able to reject or discriminate against emission from the Sun,
Moon, and Earth, which appear only in the sidelobes of the beam. None of these sources
are expected to be significantly polarized, but asymmetry in the antenna response to the
two linear polarizations will create spurious signals. This effect is responsible for the
false-detection claimed by Nanos[13], who later attributed his detection to pick-up from
a elevator tower in close proximity to his observing site. POLAR requires that the total
power from these sources lie below 1 pK, necessitating 75 and 63 dB sidelobe rejection for
the Sun and Moon, respectively. Assuming 30 dB rejection from the ground screen, this
level of rejection can be achieved with the corrugated horn antenna if data are rejected
when these sources lie closer to the zenith than 50° and 30° respectively. Binning of the
data in Sun-centered or Moon-centered coordinates will allow us to uncover correlations
between the position of these objects and the response of the polarimeter. Spillover from
the ground and surrounding structures is minimized by incoporating two-levels of ground
screening. The first ground screen rotates with the polarimeter and provides ~ 30 dB
of suppression. This ground screen is covered with eccosorb foam sheets which absorb
atmospheric radiation, rather than polarizing it via reflection off of a metal surface. The
outer ground screen is fixed with respect to the polarimeter and provides an additional
30 dB suppression. This screen reflects the sidelobe response which diffracts over the first
screen, to the 10K sky rather than the 300K ground. The combination of two levels of
ground screening, along with the corrugated feedhorn’s intrinsically low sidelobe level,

reduces the contribution from off-axis radiation by ~ 100 dB.

135



Chapter 7

Large Angular Scale Foregrounds

in the K, band

A fundamental question for any attempt to measure the polarization of the CMB is
whether the cosmological signal can be distinguished from polarized foreground sources.
While astrophysical (non-cosmological) sources of polarized radiation are of interest for
other fields, the measurement of CMB polarization is our main objective, so these sources
are spurious effects. These foreground sources all have spectra that are distinct from
that of the CMB, and in principle can be distinguished from it by multi-frequency mea-
surements. This technique has been employed for observations of CMB anisotropy [89].
However, polarized foreground spectra have not been studied as extensively. To estimate
the intensity and spectra of these foreground sources, we rely on theoretical predictions and
extrapolations from measurements at different frequencies of the antenna temperatures of
these foregrounds. Here we summarize the properties of atmospheric and astrophysical

(though non-cosmological) foreground sources.
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Microwave Polarization Signal Sources
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Figure 7.1:  Polarized Foreground Spectra at Millimeter Wavelengths. Spectra of expected
polarized radiation sources at high galactic latitudes, are shown for a 7° beam. A 3 pK polarized
CMB signal is shown, corresponding to 10% of the 107 CMB anisotropy. At frequencies lower
than 90 GHz the polarization signal is dominated by galactic synchrotron emission (up to 75%
polarized, as shown). Galactic bremsstrahlung radiation is not polarized in direct emission, but can
be up to 10% polarized (as shown) after Thomson scattering. Galactic dust is shown conservatively
with 100% polarization.
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7.1 Synchrotron Emission

Diffuse galactic synchrotron radiation arises from ionized regions of our galaxy that posses
magnetic fields. Consider the relativistic motion of a charged particle of charge ¢ and mass

m. We have that:

%('ymv) - %v x B (7.1)
d
—(ymc?) =qv-E =0. 7.2
dt

The second equation implies that v = constant, so we have: m’y% = %v x B. Expanding
this equation into terms parallel and perpendicular to the magnetic field, we find that

v)| =constant, and m’yd—sg- = %vl x B which the equation of uniform circular motion with

qB
yme®

frequency wB = Since the angular acceleration is a | = wgv |, we find that the total

radiated power is:

_ 2¢'B? 2 2
T 38m2 ) L

For an isotropic distribution of pitch angles a, we find P = %UT %'YQU B, Where op is the
Thomson cross-section and Ug is the energy density of the magnetic field: Ug = B?/8.
Following [90], we can obtain a qualitative description of the spectrum of synchrotron
radiation. The individual electrons will produce a brief pulse of radiation once per revo-
lution. These pulses have a broad spectrum, whose square is proportional to the power
spectrum of the radiation. If we assume that the charges have an energy spectrum of:

N(E)dE = C(a)E PdE, where the particle distribution index, p, is related to the spectral

138



index, s, by: s = prl, we obtain the following spectrum:

B V3¢>CBsin a (p 19)F(p B i)( mew )—(10—1)/2
4 12

Plo) = Y24 225X n P, Y _ e
@) 2tmct(p+1) 3¢Bsina

4 12

and polarization:

b
+

S
+
wl~3

The antenna temperature of synchrotron emission obeys a power law:

Tsynchrotron(l/ ) xXv Ba

where ( is referred to as the synchrotron spectral index. The polarization level II of

synchrotron radiation is related to the spectral index [91]:

38+ 3

M= .
33+ 1

Faraday rotation and non-uniform magnetic fields will reduce the level of polarization
given by this equation. The radiation is linearly polarized between approximately 10%
and 75%, depending on galactic coordinates. Below 80 GHz the polarized synchrotron
emission dominates all sources, including the CMB if it is polarized at the 1 x 1075 level,
as shown in Figure 7.1. In figure 7.2 we estimate synchrotron emission by extrapolating
the Brouw & Spoelstra [92] measurement at 1411 MHz to millimeter wavelengths with
the modified power-law spectrum used to fit the COBE DMR data [93]. For our modeling

purposes we choose § = —2.9 ([94], [93]), and T1= 75% [92].
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Figure 7.2: Polarized Synchrotron Emission at 1411 MHz ([92]) extrapolated to 31 GHz using
a power law spectrum. From right to left the range of RA is Oh < RA < 24h, and from top to
bottom the range of Declination is 20° < § < 60°. POLAR’s observing strip appears in the middle
of the figure.

7.2 Polarization Produced by Interstellar Dust

There are two mechanisms by which interstellar dust may produce a polarized signal. The
more familiar thermal, vibrational, emission is treated first. Afterwards, we summarize
recent developments in the modeling of polarization produced by rotating dust grains.

Extinction of unpolarized radiation from dielectric cylinders will produce polarization
because the cylinder’s scattering efficiency (or extinction cross-section) is different along
the E and H planes of the radiation. The reason for this rests in the anisotropic nature of
the grain’s electric and magnetic moments. For cylinders with radii much smaller than the
wavelength of the scattering (as in the case of simple dipole antenna), currents will flow
along the cylinder axis. Depending on the real and imaginary components of the grain’s
complex index of refraction, m.

Following Spitzer [95], we define z = %, where a is the cylinder radius. We find that

the polarizing effectiveness of an infinite cylinder with a refractive index of m = 1.33',

r= 28?;8ﬁ, varies from r ~ 1 (i.e., 100% polarization) at x = 1, to r ~ 0.4 at z = 5.

IFor example, for ice m = 1.33
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7.2.1 Thermal Dust Emission

The polarization level of interstellar dust is not well known. Depending on the shape and
the alignment of dust particles, emission from dust particles may be highly polarized with
the polarization I ~ 0.07 , usually aligned parallel to the galactic plane [95].

At low galactic latitudes thermal emission from dust particles dominates the near in-
frared spectrum. Using the dust spectrum measured by the COBE FIRAS [96] normalized
to the IRAS 100 micron map, we find that high galactic latitude dust emission is negligible
below 80 GHz, even when assumed to be 100% polarized. We use the two temperature

dust model [96] :

C2 1% 2
Tuust 57 ( - GHZ) B, (20.4K) + 6.7B, (4.77K)] . (7.3)

At high galactic latitudes Tyg,s ~ 10pK at 200 GHz ([94], [93]).

7.2.2 Diffuse Emission from Rotating Interstellar Dust Grains

Recently there has been an effort to explain the “anomalous” correlation between infrared
dust emission at 100um and measurements made at 30 - 50 GHz. The emission does
not appear to be consistent with Ha emission [97](to be discussed in the following sec-
tion). Instead, an explanation in terms of spinning interstellar dust has been proposed by
Draine and Lazarian [98]. The emission arises from dust grains composed of 100-1000 par-
ticles which are “spun-up” by incident starlight due to their non-vanishing electric dipole
moments. The precise spectrum of emitted radiation depends sensitively on the models
used for the components of the Interstellar Medium (ISM) and for the grains themselves.

Generically, however, the rotational emission is expected to dominate that from thermal
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dust emission below 70 GHz [98].

The main question for the POLAR experiment is that the emission may be polarized.
The dust grains are also expected to have a non-vanishing magnetic dipole moment, which
will tend to align with the magnetic field in the ISM. Lazarian and Draine [99] find that
the polarization produced by such grains is expected to be in the range 0.1-10%. This
deleterious effect is expected to be reduced slightly, however, as the alignment of the
magnetic field is uncorrelated over large regions of the ISM. We have not considered this
foreground in any of our analyses, though in the future we may investigate its effect on our
data set. As usual, each foreground contaminant necessitates a wider spectral coverage in

order to subtract.

7.3 Bremsstrahlung Emission

Continuum emission from electrons encountering protons which does not result in recombi-
nation is known as free-free emission. The radiation produced is the familiar bremsstrahlung
emission found wherever there are copious quantities of free electrons and protons. One
type of ionized region are the HII regions, usually identified in optical wavelengths by H,,
light. HII regions are often associated “Stromgren Spheres” — spheres of ionized plasma
surrounding energetic stars.

Bremmstrahlung scattering of unpolarized radiation does not produce polarized radia-
tion [90]. However, bremsstrahlung emission will be polarized via Thomson scattering by
the electrons in the H II region itself. The rescattered radiation will be polarized tangen-
tially to the edges of the cloud, at a maximum level of approximately 10% for an optically

thick cloud.
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As a toy model, we will consider an incident plane wave emitted from the cloud center
to a small scattering region at the radius of the cloud. From Chapter 2 we expect that the
polarization will be generated by the plane wave, so all we need to know to estimate the
polarization produced by this scattering is the emission of the thermal bremsstrahlung.
Following Spitzer [95], we estimate the free-free emission factor for electron-proton scat-

tering as :
Nen;
j, = 5.44 X 10*39gff—1ele*h”/kaerg em 2stsrTHz !, (7.4)
T2
where n; is the proton density, n. is the electron density, and gys is the Gaunt factor,

which is a slowly varying function of frequency, which in the radio region is well-modeled

by:

3/2

g7 = 9.77(1 4+ 0.130log Zhiny (7.5)

To obtain the total radiated energy, €, we integrate equation 7.4 over 4wdr and obtain:

e=14x 10*27neniT% (gff)ergcm*SSflsrlezfl, (7.6)

where the mean Gaunt factor, (g¢s), has a weak dependence on temperature, varying
between 1.1 and 1.4 over reasonable HII temperature ranges.

We now need the radius of the Stromgren Sphere surrounding the star (which produces
the free-electrons). This radius is a function of the star’s spectral type. From Spitzer we
have table 7.3.

Due to the rotational symmetry about the line of sight of the spheres we are considering
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Table 7.1: Properties of HII Regions
H Spectral Type ‘ Terf°K] | R/Rgun H

05 47,000 13.8
09 34,500 7.9
BO 22,600 6.2

we expect that the intrinsic polarization produced by these clouds will be zero. However
scattering of the CMB quadrupole (which is estimated to be that measured by the COBE
DMR) by the free-electrons in the HII region will produce polarization with a magnitude

of

3o |7
~— = ~1—=10uK 7.7
Q o \/ 5QRMS 7 (7.7)

The polarization produced by this type of scattering will peak at angular scales com-
parable to the angle subtended by the HII regions, and thus for POLAR’s 7° beam they
are negligible. The locations and emissivities of galactic H II regions are not well known,
but Bennett et al. [93] model the bremsstrahlung emission in the galaxy by subtracting a
synchrotron model from microwave sky maps. In any case the polarization in the rescat-
tered bremsstrahlung emission will be at least an order of magnitude smaller than the
polarized synchrotron signal at frequencies greater than 10 GHz. We quote the result of

Bennett et al. [93] that

—-2.15
Tbremsstrahlung XV ) (78)

with total intensity ~ 40uK at 30 GHz ([94], [93]).
Dust grains are known to be present in HII regions. Since we know from the previous
section that interstellar dust polarizes starlight, we also expect that the dust associated

with HII regions may produce polarization in addition the polarization we have considered
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Figure 7.3: COBE Estimated Free-Free Antenna Temperature Map Centered on Declination
6 = 43°. From right to left the range of RA is 0h < RA < 24h, and from top to bottom the range
of Declination is 20° < § < 60°. POLAR’s observing strip appears in the middle of the figure.

by Thomson scattering. We have not estimated this effect, however.

7.4 Extragalactic Point Sources

The dominant radiation mechanism for extragalactic radio sources is synchrotron emission
[100]. These sources have a net polarization of < 20%. Calculations made by Frances-
chini et al. [101] of the temperature fluctuations in measurements of anisotropy of the
CMB arising from unresolved, randomly distributed sources show that they contribute
negligibly at 30 GHz to a 7° anisotropy experiment. If the orientations of the polarization
vectors of these sources are uncorrelated over 7° regions, we would also expect a negligible

contribution to the signal observed POLAR.

7.5 Atmospheric Contamination

Although strictly not a foreground, emission from the atmosphere provides an equally
formidable obstacle to the detection of polarization of the CMB. The antenna temperature
of the earth’s atmosphere between 10 and 60 GHz is dominated by an emission feature

at ~ 22 GHz caused by atmospheric water vapor, and a series of emission lines at ~ 60
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GHz due to molecular oxygen. We now investigate whether or not this emission is linearly

polarized.

7.5.1 Polarized Emission from the Earth’s Atmosphere in the K, Band

In the absence of external fields, neither of these atmospheric components is known to
emit polarized radiation in the frequency range of interest. However, Zeeman splitting of
the energy levels of atmospheric molecules by the magnetic field of the earth can produce
polarized emission. The valence band of water is completely full, and thus, does not
exhibit Zeeman splitting. However, the Oy molecule has a non-zero magnetic moment due
to its two unpaired valence electrons which interact with the Earth’s magnetic field. We
here discuss polarized emission from mesospheric oxygen, and show that it is negligible in
comparison with the expected polarized intensity of the CMB.

The Zeeman effect breaks the energy degeneracy of the two unpaired valence elec-
trons of molecular oxygen. The total angular momentum quantum number of the oxygen
molecule is j = 1, which implies that the oxygen molecule’s rotational spectral lines are
Zeeman split into 25 + 1 = 3 distinct lines. Dipole radiation selection rules for transi-
tions between these levels permit transitions as long as the change in magnetic quantum
number, m, is: Am = 0,%1. Transitions with Am = +1, for example, correspond to
the absorption of a right circularly polarized photon or the emission of a left circularly
polarized photon. The absorption and emission properties depend, therefore, on both the
frequency and polarization of the radiation. The frequency of each Zeeman split level is

[102], [103]:

vz = vy + 2.803 x 1072 Bn(Am)[GHz] (7.9)
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where 1 is the unperturbed frequency, 7 is a shift factor with |n| < 1, and B is the
magnitude of the earth’s magnetic field, typically 0.5 Gauss throughout the mesosphere.
The largest possible frequency shifts occur for n = 41, which imply that the center
frequencies for the polarized emission components will be confined to within 1.4 MHz of
the unsplit center frequency. In principle, emission at these split frequencies could be up to
100% circularly polarized. Away from the center frequencies, the total intensity of emitted
radiation decays with frequency as: I ~ (V_]—VO)Q [104]. For a small shift in frequency, Avy,
away from the center frequency, the first order fractional change in emissivity can be shown
to be:

AT 2Ag

— = . 7.10
I vV — 1 ( )

For a single Zeeman split component,

Al 2A8vz am

I v—vy

where Avgzam = vz — vy = 2.803 X 1073 Bn(Am)|[GHz], from equation 7.9. To obtain
the total contribution to the emission of both polarization components we must sum over
left-handed and right-handed contributions:

AItot _ Z 2AVZ,Am (7]])

1 Am=t1 YV TVZ

However, we have for the shift factor in equation 7.9: n(Am = +1) = —n(Am = —1)
so the net effect on the emissivity is exactly canceled out by the two circularly polarized

components [104]. Any second order contributions to the emission scale as
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1
(v—vz)?’

which implies a contribution of < 1078K for 26 < v < 46 GHz, i.e. the frequency
band which POLAR. will probe. For these frequencies of observation there is also a small
Faraday rotation of the plane of polarization of the CMB. Rosencranz & Staelin [105]
show that the rotation of the plane of polarization will be less than ~ 1072 degrees for

these frequencies. Therefore, both the polarized emission and Faraday rotation of the

atmosphere are negligible effects in the range of frequencies which POLAR probes.

7.6 Summary of Astrophysical Foregrounds

Of all the relevant foreground sources, only diffuse galactic synchrotron radiation and
rotating dust are expected to appear at a level comparable to the anticipated polarized
CMB signals. We have simulated the performance of POLAR attempting to measure
polarization in the presence of foregrounds based upon the general least squares method
developed by [106]. To corroborate the results of the analytic error calculation, we have
also performed a more explicit foreground removal simulation similar to that of [89]. We
find that the effect of the foregrounds is to increase effective per-pixel noise on the recovered
Stokes parameters by a factor of ~ 3 [107]. If POLAR can achieve a per-pixel noise lower
than 1 uK it will be capable of discriminating a ~ 1 — 3ulK CMB polarization signal from

polarized galactic synchrotron radiation.
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Chapter 8

Observations

8.1 Site

POLAR’s observations are conducted from a custom-built observatory located at the
University of Wisconsin’s Pine Bluff Observatory, (PBO). PBO is located at Longitude
+89°45, Latitude +43°01’, approximately 10 miles west of the campus and downtown
Madison . Its bucolic location places it in a relatively RF quiet region. The observ-
ing platform itself is leftover from the UW Astronomy department’s Wisconsin H-Alpha
Mapper (WHAM).

A motorized dome encloses the radiometer and rotating ground screen, keeping precip-
itation out, and maintaining a moderately thermally stabilized enclosure. The dome itself
can be operated manually, or remotely via a WWW page in case of inclement weather
developing while the experimentalist is elsewhere. The platform has a high-voltage power
supply for operation of the CTI 8500 compressor, which requires 220V at roughly 10A.
Also running to and from the pad is an Ethernet hub and cables which provide an in-

tranet for data to be transferred from the rotating computer attached to the radiometer
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to a desktop workstation located ~ 100’ away in a separate building.

8.2 Atmospheric effects

Although the atmosphere is not expected to produce appreciable linearly polarized ra-
diation, it produces a non-negligible contribution to the system temperature of the ra-
diometer. Additionally, significant fluctuations of atmospheric loading increase the low-
frequency noise spectrum of the receiver. We summarize the contribution to the antenna
temperature seen by the radiometer in the K, band by computing the power spectrum of
the atmosphere using a commercial code, AT!. To compute the antenna temperature AT
requires as input the desired level of precipitable water vapor (PWV). With this specified,
AT can compute the antenna temperature vs. frequency using a standard model of the
earth’s atmosphere. Figure 8.1 shows the atmospheric antenna temperature vs. frequency
for various levels of PWV 2,

POLAR convolves the spectrum of the atmosphere with the (power) its transfer func-
tion. From this we can compute a direct relationship between PWYV and T,4,; see figure
8.2.

Since the dominant contribution to the atmospheric temperature comes from the 22
GHz H5O line rather than on the Og line at ~ 60GHz, the dependence on PWYV is
quite noticeable. Data on PWYV is provided by the FAA which uses atmospheric weather
balloons (radiosondes) launched at regular intervals, from several major US airports. In

figure 8.3 we show a plot of PVW vs. date for 1998 from the nearest sounding balloon

Lwritten by Erich Grossmann, Airhead Software, Boulder, Co.

2The author wishes to thank Chris O’Dell for the preparation of the AT figures
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Figure 8.1: Spectrum of Atmospheric Antenna Temperature in the K, band vs. Precipitable
Water Vapor (PWV) . From the top down, the four levels of PWV are: 30mm, 20mm, 10mm,
Omm.
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Figure 8.2: Integrated Atmospheric Antenna Temperature in the K, band vs. Precipitable
Water Vapor (PWYV)
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site in Green Bay, WI. Clearly, observation in the winter is preferred as water vapor in
the atmosphere “freezes out”, resulting in a low PWV and equivalently, a low atmospheric

contribution to our antenna temperature.
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Mean: 17.0397 mm

Figure 8.3: Radiosonde-measured Precipitable Water Vapor (PWV) vs. day of 1998 from Green
Bay, WI.

As far as the stability of the atmosphere is concerned, we are guided only by theory
as we have not yet compiled records of the power spectrum of atmospheric fluctuations at
PBO. It is well known that the atmosphere obeys a Kolomogorev spectrum [108], [109].
We can compare the power spectrum of data taken on days which appear to be stable vs.
unstable. The effect of atmospheric fluctuations can also be estimated by comparing data

taken with the internal cold load, as in Chapter 5, with real data taken while observing.

8.3 Observation Strategy and Sky Coverage

Over a single night, POLAR sweeps out a 7° x 360° x cos43° = 1844°2FW H M swath of

the sky. The 36 7° FWHM pixels comprise 5% of the sky. The data is binned in to Stokes
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Q and U vs. RA, and multiple nights of data are coadded. The scan passes through the
galaxy twice per day at RA~ 19h and again at RA~ 6h.

Constraints on, or detection of, the polarization of the CMB and its associated power
spectrum depend greatly on the amount of sky coverage of the observation as well as
the sensitivity of the radiometer. Sensitivity considerations are common to all CMB
observations: time limitations restrict signal integration, and constrain the amount of
sky coverage. We must reach a compromise between the integration time required to
achieve the desired signal-to-noise ratio while also sampling a representative distribution
of celestial regions. We now discuss our observing strategy in the context of the achievable

level of sensitivity of POLAR.

8.3.1 Sensitivity to the Power Spectrum

POLAR’s sensitivity to polarized CMB fluctuations is quantified by its window function,
Wpe. The observed two-point correlation function is related to the power spectrum and

window function as follows:

1
47T

(Q(N1)Q(N2) + U(hy)U( i 20+ 1) x CIW{ x Py(cos 6), (8.1)
=0

where, for example, Q(fi) is the Stokes parameter measured for a pixel located in the
direction 1. C’zH is the power spectrum describing the degree of polarization on angular
scales characterized by multipole £, W, f is the window function of this observing scheme,
and cos(f) = Ny - g is the separation between pixels in this observing scheme.

The analysis of POLAR differs from that of most anisotropy experiments in several

respects. The primary difference is that the observations are total-power in nature, rather

153



than differential. The window functions for this experiment will reflect the fact that
there is no “chopping” of the beam in sky position inherent in the observation. Single
pixels will be formed by binning the acquired data, and differencing between pixels can
be performed during analysis of the data; not during acquisition. This approach avoids
systematic effects which can arise from mechanical chopping mechanisms. Data from
POLAR will be analyzed using a variety of synthesized window functions, each sensitive
to a different angular scale. In this respect the analysis will be similar to that of the
Saskatoon Big Plate observations [18, 69].

Window functions for observations with less than full-sky coverage are specified by
three functions: the beam profile function, the beam position function, and the weight-
ing or ‘lock-in” function [110]. The beam profile function, G(6,0;,0p), where op is the
beamwidth, quantifies the directional response of the antenna, which is roughly Gaussian
as seen from the beam-maps of Chapter 4. G(0,0;,0p) effectively samples all angular
scales larger than, approximately, the angular size of the beam. The angular coordi-
nates of the center of the beam are specified by the beam position function, 6;. The

&

lock-in function, wg",

is the weighting of each of the N binned pixels indexed by ¢, for

exp (—ﬁe_—eg"ﬁ> , Where

205

the scan strategy denoted by a. We have G(6,0;,0p) =

2
2rog

op=FWHM/2v/21n2 = 0.052.

Following (White & Srednicki), the window functions are:
Wt = / d%q / d&koH (%1)H® (%2)Py(R1 - X1) (8.2)

where Py are the Legendre polynomials, and H*(X = >, w*G(6,0;,05) quantifies the

response of the antenna (for a differencing strategy indexed by «), when pointed in the
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—_0:)2
direction of %. For a gaussian beam: H®(X) = 3, wf =L exp (—M) .

2 2
2rog 205

The ultimate sensitivity of the instrument to the power spectrum, Cy is given by [111]:

1 a 2 1
ACY 2 )}2 {1 n (AQryMsOrwrHM) eﬁ%lﬂ (8.3)

Cy - {(2£+1 Cy w/fsky

where: o, = 0.4250pw g, AQRrums is the per-pixel Stokes parameter sensitivity, and
the fraction of the sky covered, fsi,, for POLAR is ~ 5%, as mentioned above. At
large angular scales, £ is small, and since there are only 2{ + 1 ay,, to estimate Cp, the
contribution to the variance in the recovered Cy is large (“Cosmic Variance”). This is
the ultimate limit to the error in the power spectra as the per-pixel instrument noise is
reduced — there is no gain made by integrating for longer times. However, since POLAR
has a large instrument noise, we must integrate for long periods of time such that the
second term in equation 8.3 is reduced to the level of 1uK. The long term stability of
POLAR is crucial to achieving the levels of instrument noise per-pixel required to make

detections of non-zero low-£ values of C,.
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Chapter 9

Data Reduction and Analysis

9.1 Data Analysis Methodology

The raw data from the polarimeter consists of eight data channels (2 total power diode
detectors, 3 correlators x two lock-in phase references: in-phase and quadrature phase),
the absolute one-bit encoder (AOE) and encoder signals, and numerous housekeeping sig-
nals (temperatures of both HEMTs, the horn temperature, the cold stage temperature,
the dewar’s pressure, and 2 temperature sensors in the room-temperature receiver box,
and RTRB heater PID monitor channel). The raw data from the total power detectors
are sampled at 20 Hz after leaving the 5 Hz low-pass anti-aliasing filter. For the corre-
lators the raw signal is amplified then sent to a modulator/demodulator which is driven
synchronously by either the in-phase or out-phase reference waveform, and then low-pass
filters at 5 Hz. Data is collected for 7.5 minutes and then stored to an ASCII file.

The signal processing procedure is composed of the following steps:

e Binning of data by rotation angle and corresponding initial estimation of noise at

this bin size.
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Estimates/removal of atmospheric contamination in the correlators using the total

power detectors.

Fits to recover Stokes Q and U for each rotation.

Binning timestream data into R.A. pixels on the sky, and estimation of noise for a

single night of data.

Co-adding of RA pixels for all nights of data

9.2 Binning of Data

The raw data contains an average of 600 samples per rotation taken at a sampling rate
of 20 Hz. The first step in the analysis is to bin the data from the natural sampling
angular binsize, % = 0.6° to larger bins in order to have enough data points to have an
accurate noise estimate for the subsequent minimum-y2-fits. Clearly, it would be nice to
have many samples per bin to estimate the noise on the timescale of the bin. However,
with a constant rotation rate of v ~ 2RPM, “smearing” or correlation between bins would
be appreciable as we increase the binsize. With the fundamental integration time of 0.2
sec defined by the anti-aliasing filters, there are only 20/v/5 ~ 9 independent samples
per second. Figure 9.1 shows the first level of binning: into rotation angle only, for ten
rotations of the polarimeter (~ 5 minutes of data). The data plotted here are from a
single high-galactic latitude pixel during excellent observing conditions.

The next step is to co-add all such rotations (within a given time period, thus defining

our pixel on the sky) to form a “single-rotation” (for that pixel). This data is then fit for

the Stokes parameters, as shown in figure 9.2.
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Correlator J1: 10 Rotations Binned Data vs. Rotation Angle
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Figure 9.2: Shown here is the output of correlator J1 for ten rotations of the polarimeter, with
all rotations averaged and fitted to obtain the Stokes parameters as shown. The data are first
binned into angle for each rotation, and then all rotations are co-added to form a single-rotation.
The solid line is the fit to the model S(0) = I + @ cos 26 + U sin 20. No rotation synchronous e.g.,
cos @ or sin @ components have been removed.
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9.2.1 Inter-bin Correlations caused by rotation of the polarimeter

Let us model the output of the polarimeter viewing a polarized source as:

v(t) = P(t)sin 2uvt + n(t) (9.1)

where P = /Q2+U? . We defer for the moment the “beam-smearing” and its effect
on sky pixel-pixel correlation . Also here P(t) = constant = P,, and n(t) is Gaussian
distributed noise with variance o2.

With v = 0.03 Hz, we sample v(t) 600 times per rotation and average the results into

N bins: v; = % tiijAA//; v(t)dt, with A = 30/N (binsize in seconds). From Chapter 1, the

convolution theorem asserts that if y(t) = [0 h(t — ¢/)x(t')dt’, then :

y(t) = /_ O:o B (W)X (w)e, 9.2)

where H(w) & X(w) are the Fourier transforms of h(t) & xz(t), respectively. In the

present case, h(t) = x for t € {=A/2,A/2}, and is zero elsewhere. Therefore, H(w) =

e_iZAm sm:}/%ﬂ. Now we need the spectrum of v(t) = P,sin 2vt + n(t):

V(w) = [ v(t)e™tdt (9.3)
= [, [Pysin 2ut + n(t)]e™'dt (9.4)
= P, [ 502 — w) = 62 +w)) + N(1)] (9.5)

Our ultimate goal is the power spectrum, Sy(w), of the binned data, Sy(w) = \Y!Q =

[HPV |2 = Sp(w)Sy(w)-
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This is easily seen to be:

S, (@) :i{sinwA/Qr{P_g o?

x"or Z10(2w — w) + 82 + w)] + 7]. (9.6)

To determine the effect of the binning on our signal and noise, we examine the auto-
correlation function (ACF), Ry(t), of y(t) by Fourier transforming Sy (w) — Sp(w), (where

Sp(w) is the PSD of the noise):

Ry(t) = 2%, [2A2) [ 520 — w)] + 8(20 + w)]etd 9.7)
= {BOQS‘;IH—A”A} : cos 2ut. (9.8)

The ACF of the binned noise is :

[ rsinwA/27207

We now define ¢(t) such that:

) A/2
/ q(t)dt = / dt. (9.10)
—00 —A/2
Then:
%[22 a(t)etdw = £ f_AA/% e“tdw (9.11)
e~ wA/2 sin wA /2
= SR (9.12)
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and then:

/ © gDt = / - [M]Qemdw. (9.13)

oo oo b w/2

So we need to compute the ACF of ¢(t), with:

A A A A
=1 == N=1te{-==
at) =1t (-5, 5k Lalt) =10 € -5, 5},
and:
| ata(t)de = 2q(t). (9.14)
—0oQ
Substituting into eq. 9.9, we have:
co |sin 2 G
Ro(t) = [, [Tw/g@] o2etdw (9.15)

<[] m=a,

=0 otherwise.

The best way to quantify the effect of the binning is to look at the signal-to-noise ratio

of the binned data, and compare it to the SNR of the unbinned data which is just 2572;.

The SNR is :

SNR = /o2/o2. (9.16)

First, we have for the signal:
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02 = [%_Sy(w)dw
— 2 Jio [EneB2)* 1B 500 — w)]| du

_ P2 [sin2mvA]?
T 2AZ2 27y

for v = 0.03Hz and A = 122%61; = 0.2sec/bin , 02 = 0.04P2. Note that if we integrated

for a multiple of 5 = 02 =0, as expected since we would be averaging our signal to zero.

The variance of the noise is:

o5 = [% AIN (w)[Pdw

=25 [t 2

. 2
~ 2 (oo [sinwA/21%42 5
~o° [, |:Aw/2] - dw.

The SN R? then becomes:

0_72) = Pg {%]2 . (9.17)
0'% o2 fOOO [sin:}/%p}de

We see that A ~ 2 implies that SNR ~ 1. This bin size would give us only about 10

points per rotation to recover (3 and U, so to be conservative, we take A = 0.2s which

gives 144 points per rotation.
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9.2.2 Is Our Binning Strategy Optimal?

We can now compare the performance of our binning technique with that of our fore
bearers Lubin and Smoot [15], hereafter LS, by asking the following: given a rotation time
of Typin, what is the optimal distribution of N samples of the output of the polarimeter?
For a polarized source, the output of the radiometer is given by: v(t) = Q cos2y(t) +
U sin 2¢(t). LS measured the output at 8 locations in angle separated by 45°. To recover
the Stokes parameters LS effectively perform a linear least-squares fit to a model, which
is parameterized by a model of their expected output. Their observables are essentially
two eight-dimensional vectors, one for @ and one for U. To project out the @ (U) content

of the eight-dimensional data vector which they observe they multiply by X7 (X2):

1 0
0 1
-1 0
0 -1

s
[

(9.18)

Sl -
[N}
_
Sl -
[N}
o

0 -1

To perform the linear least-squares fit, LS form the design matriz [112]: A;; = %’;ﬂ)),

with ¢ € {1,2} and j € {1,...8}. This results in the following covariance matrix, C;; =

[ozl-j]_], where o;; = Zizl w Assuming equal noise per integration at each

k
position, o = 0/4/Tspin/8, we have:
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2 0
1 802
Cyj = =2 : (9.19)
8Tspin 0 2

showing that the estimates for () and U are uncorrelated.
For POLAR binned to 144 points per rotation, the corresponding design matrix is

determined by:

cos 2vty sin 2vty
X = : . Xy = (9.20)
cos 2vt 44 sin 20144
We find:
cos 2vty sin 2vtq
X;(t; 1 : :
Aij = it 1 : : : (9.21)
a(t;) o
coS 2vt144 sin 2vtq44

Now we construct & = ATA and the associated covariance matrix Cj; = [ay;] 7'

1 144 1 144 _.
5(144 — 5,7 cos 4vt;) 5> 507 sindvt;
144 2 2( =1 2 2 Lui=1 2
CPOLAR — 7 ( )). (9.22)

Tspin % 142 sin 4wt %(144 + S cos dut;

At first glance this covariance matrix appears to have off-diagonal elements — i.e., we
seem to have correlated our errors on Q and U. However, by symmetry !, all of the sums in

equation 9.22 are equal to zero, leaving us with the resulting diagonal covariance matrix:

2 0

1 14402

CcPOLAR _ - 70 . (9.23)
J 144 Topin \ )

1SN sin2mi/N =0
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Now we can compare equations 9.19 and 9.23. We assume that the entire rotation time
is used for integrations for each method. The LS method will combine 8 measurements,
with variance 8 x g2 /Tspin to achieve a final variance of 2 x o?. Similarly, POLAR will
combine 144 samples with variance 144 x o2/ Tspin to obtain final variance of 2 x o2, which
is equivalent to the minimum detectable temperature for the LS method. Thus, for both
LS and POLAR the standard deviations of Q or U will be a factor of v/2 times larger than
would be obtained for an intensity measurement given the same length of time.

In practice, not all of the time for a given rotation can be used for integrations in
the LS method. Time is lost moving between angular positions, and the polarimeter is
not capable of stopping instantaneously so it must be slowed to a stop. Therefore, given
a fixed time per revolution, set perhaps by the characteristic timescale of fluctuations of
atmospheric emission, the method used for POLAR is preferable.

Finally, although the errors on Q and U are uncorrelated, the noise in the time stream

1s correlated between adjacent bins for two reasons:

e the anti aliasing filter has non-vanishing correlation on timescales less than 0.2 sec.

e the output from the correlator is correlated with the output from the total power
channels due to the presence of the correlated atmospheric component present in

each total power channel.

We will expand upon the abrogation of the second of these phenomena. in the following

section.
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9.3 Correlation Between Sky Pixels

A deficiency of the drift scan method employed by POLAR is that adjacent pixels share
significant correlated signal. We now present a formalism to address this concern, and
estimate its effect on our results. Let us model the output of the polarimeter when

viewing in the direction 6 as:

P(t) = P(0)sin ¢(Qt) + n(Qt) (9.24)

where IT = \/Q? + U? and ¢ is the RA, Q is the rotation rate of the earth. The zenith
in Madison, WI corresponds to a declination of 6 = 43°. In 24 hours of right ascension
there are 360° cos 43° ~ 255° along our scan. With the angular rotation rate of the earth:
w ~ 1.2 x 107°Hz, we co-add 7.5 minutes of data to form a single bin of angular size 1°.32.
Our beam size is ~ 7° which implies that adjacent bins will share significantly correlated
signal, upto a lag of ~ 5 bins. From the individual bins we therefore co-add several bins
to form a single larger bin with (hopefully) larger signal and lower noise. The behavior of
the noise during this binning is our first indication of the performance of the instrument,
as the signal contribution is clearly subdominant.

First we model the output signal as the convolution of the true sky signal, 11(#), with

the normalized antenna power response function?, B(0):

P(6) — / T 1(0)B(6 — v)dy. (9.25)

2assumed to be azimuthally symmetric
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From the convolution theorem we have:

P(0) = / TI(k) B(k)e™ dk, (9.26)

where TT1(k) and B(k) are the Fourier transforms of T1(9) and B(6).
We would like to know how much correlation our binned pixels have between them.
The binning in angle effectively introduces a low-pass filter, H (k). The spectrum of the
binned pixels will be given by: P(k) = H(k)II(k). The binned pixels are then P(8) =

X 25, P(k)e*™*dk. H (k) is given by:

1 poitA omikt’ ggr _ ) Ae?™ i sin 2k A
e = —

:Z 0;,—A A 27k 2wk A

H(k) (9.27)

where 2A = 200bins/255° x 5 ~ 1°.32.

The most direct method is to compute the autocorrelation function of the measured
sky data P;(f) and find the lag in degrees where it falls to zero. The autocorrelation
function of P;, (P;(0)P;(¢)), assuming statistical isotropy of P;() is only dependent on

the angular separation 0 — @', and is given by:

(P(0)P(0")) = [25, Pi(0)Pi(6 — 0")do (9.28)
= [ TI(k)TI(k)B(k)B(k)e* ™0 dk (9.29)
= [ CpWye*™ M, (9.30)

where the wavenumber k& ~ £.

An alternative method to check for non-vanishing correlation between sky pixels is to

168



examine the power spectra of the binned data. We can think of the averaging procedure
used during construction of the sky bins as a low-pass filter, and then convolve the filter
response function with the data of the 7.5 minute bins. This is best done in the frequency
domain where the convolution is the inverse Fourier transform of the product of the equiv-
alent transfer function (i.e. spectrum) of the filter and the angular/time spectrum of the
7.5 minute data. This Fourier analysis will also allow us to identify periodicities in the raw
7.5 minute bins which, since the astronomical signal is negligible, can only be attributed
to systematic effects in our data. By looking at the measured power spectrum we can
determine the range of angles over which our binning strategy introduces correlations,
just as in the case of an RC low-pass filter where frequencies less than the reciprocal of

the time-constant can be considered independent.

(Pi(0)Pi(0")) = |25, Pi(0)Pi(6 — 0')do

oo

= [ _TI(k)TI(k)B(k)B(k)e* 0 dk (9.31)

—0o0

= [ CWipeZ™ k0.

Here we have introduced the notation Cj = ﬁQ(k) and W, = EQ(k) Of course C},
is our main quarry, so it is not possible to substitute its value into eq. 9.31 a priori.
However, over a small range of angular scales (in POLAR’s case, at large angular scales),
we take C), = constant = Cfy.

The measured power spectrum in terms of the true power spectrum is given by:

W (9.32)



The measured window function, W, is given by:

W _ B =| L " BO) o]
_ ’/_‘):o e—(92/29§)€2mk9d9’2

o e~ 87 K05 (9.33)

showing the correlation induced by “beam smearing” is largest at small scales since

the power spectrum is largest at large angular scales. This window leads to:

.
sin® 2mkA —k202/2.

Cfmeas — Cf
k 0y r2g?

(9.34)

Notice that it is not possible to choose a binning which completely removes pixel-pixel
correlations. On bins of 3°.5 which correspond to the timescale of the individual data files,

we see that the correlation is ~ 50%, as intuition would predict.
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Chapter 10

Results

This thesis has described a work in progress: the K, band incarnation of POLAR. POLAR
is currently acquiring data and the performance of the instrument can now be assessed.
Preliminary indications suggest that the instrument is functioning quite well, though only
by conducting long-term observations will we be able to determine low-level systematic
effects “lurking” in the data set.

In this Chapter we present results of an initial data run of POLAR observing the sky
during the late summer months of 1999. Finally, we present calculations of the expected
signal level for models with early reionizatoin and outline an analysis formalism which
will be implemented in an effort to cross-correlate the future POLAR dataset with the
existing COBE DMR data set. This latter analysis is expected to give us a significant

signal-to-noise advantage over the calculation of the polarization auto-correlation alone.
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10.1 Expected Long-Term Performance of POLAR

As mentioned in Chapter 4, the sensitivity of the polarimeter is primarily determined by
its cooled HEMT amplifiers which have noise temperatures of ~ 65 K; far greater than the
state-of-the art devices which now achieve noise temperatures of ~ 10K in the K, band
[113], [114]. This noise temperature is comparable to the antenna temperature of the
atmosphere at a good observing site. As shown in Chapter 5, POLAR’s K,-band HEMTs
are much noisier, resulting in a contribution to the system noise temperature of nearly
five times the atmospheric level in the K, band.

However, even with these devices we believe POLAR will be able to produce cosmo-
logically significant upper limits on the polarization of the CMB for a universe with no
reionization, or possibly a detection of polarization for a universe with early reionization.
Long integration periods will be required to reach a sensitivity level ~ 1 —10uK per-pixel,
which would allow us to produce these results. We recall that the RMS noise in a mea-
surement of either @ or U (in antenna temperature) is given by the radiometer equation

[20], which for the @ Stokes parameter is:

/”“/(Trec + Totm + TCMB)

VAvT /2 ’

AQRrms =

(10.1)

where Ty and Ty, are the receiver and atmospheric noise temperatures, respectively.
7 is the total time spent observing the CMB; the time spent either Q or U is 7/2. Av
is the radio frequency (RF) bandwidth and as we have shown in Chapter 3, K = /2 for
a correlation radiometer. For the K, polarimeter, Ty .. ~ 75K and T, =~ 12K. If all
three correlators can be combined Av is ~ 6 GHz, resulting in a sensitivity to Q or U of

NET = AQms ~ 2mKs'/2. For the total polarized intensity we have: I, = /Q? + UZ.
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The error in I, is Al = \/ﬁAQrms, before foreground subtraction.

10.2 Long-Term Integration Tests

We note that equation 10.1 indicates that log[ATgrars(7)] vs. 7 should be linear with
slope equal to —%. Figure 10.1 shows a plot of log|AQrars(7)] and log[AUrps(7)] vs. T
formed by combining correlator channels J1 and J2 for a single night of data. The data
points are compared with the theoretical expectation values. Judging from the continuing
trend towards decreasing noise in POLAR’s correlator channels we fully expect that the
long-term stability of the instrument will allow us to set the most restrictive limits on the

polarization of the CMB.

Single Night Stokes Q Parameter AQqs vs. Time
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£
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Figure 10.1: Long term integration behavior of the noise in the Stokes Q and U parameters

for one night ~ 10 hours of data. The solid line indicated the expected behavior of the noise vs.
integration time AQgrass or Urars o 1/+/t.

173



10.3 Estimated Polarized Signal Level and Uncertainty

10.3.1 Estimated Total Signal Level in Models with Early Reionization

To simulate the performance of POLAR, we have used the state-of-the-art Boltzmann
code CMBFAST to generate all relevant power-spectra. Since the power spectra are not
immediately useful we have invoked the standard procedure of map-generation; see e.g.
[115]. Polarization maps are traditionally plotted as “sticks” with amplitude (Q? +U?)'/?
and orientation angle (1/2)tan~!(U/Q), following from the definitions of the Stokes pa-
rameters. For all figures which depict the polarization we plot the polarization amplitude,
not Q or U directly. The maps' are quite helpfull for use in simulations of the instrument’s
performance in the presence of foregrounds and other experimental non-idealities.

First we show the temperature anisotropy sky realization for a “standard CDM” model

with no reionization in figure 10.2.

RMS Fluctuation = 15.9748 uK
—49.6300 uK 46.6000 uK
I ]

Temperature Map: No Reionization

W AT AT

RA [n]

Dec [deg]

Figure 10.2: Simulated temperature anisotropy map made using CMBFAST. A “standard CDM”
model with no reionization produces the underlying power spectrum which is used to generate a
realization of the sky which is subsequently convolved with the beam pattern of POLAR to create
this figure. From right to left the range of RA is 0h < RA < 24h, and from top to bottom the
range of Declination is 20° < § < 60°. POLAR’s observing strip appears in the middle of the
figure.

Next we show the temperature anisotropy sky realization for a “standard CDM” model

with reionization at z = 50 in figure 10.3.

IPrepared by Nate Stebor
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RMS Fluctuation = 16.6077 ukK

—51.0400 uK 47.9900 uK
— |

Temperature Map: 100% Reionization at Z=50

i DI L Lo e A

RA [h]

deg

Figure 10.3: Simulated temperature anisotropy map made using CMBFAST. A “standard CDM”
model with reionization at z = 50 produces the underlying power spectrum which is used to
generate a realization of the sky which is subsequently convolved with the beam pattern of POLAR
to create this figure. From right to left the range of RA is 0h < RA < 24h, and from top to bottom
the range of Declination is 20° < § < 60°. POLAR’s observing strip appears in the middle of the

figure.

From figures 10.2 and 10.3 we see that the effect of early reionization on the tem-
perature anisotropy at large angular scales is undetectable. This is to be expected as
the primary effect of reionization is to suppress the temperature anisotropy at sub-degree

angular scales [57]. Now we show the polarization sky realization for a “standard CDM”

model with no reionization in figure 10.4.

RMS Fluctuation= 0.00538245 uK

0.000695500 uK 0.0294300 uK
T [T,

Polarization Map: No Reionization

9]

RA [h]

Figure 10.4: Simulated polarization map made using CMBFAST. A “standard CDM” model no
reionization produces the underlying power spectrum which is used to generate a realization of the
sky which is subsequently convolved with the beam pattern of POLAR to create this figure. From
right to left the range of RA is 0h < RA < 24h, and from top to bottom the range of Declination
is 20° < § < 60°. POLAR’s observing strip appears in the middle of the figure.

Finally we show the dramatic enhancement of the polarization for a model with early

reionization at a redshift of z = 50 in 10.5.
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RMS Fluctuation= 0.0691144 uK

0.00739600 uK 0.375500 uK
s [T

Polarization Map: 100% Reionization at /=50

—

RA |h

Figure 10.5: Simulated polarization map made using CMBFAST. A “standard CDM” model
with reionization at z = 50 produces the underlying power spectrum which is used to generate a
realization of the sky and subsequently convolved with the beam pattern of POLAR to create this
figure. From right to left the range of RA is 0h < RA < 24h, and from top to bottom the range
of Declination is 20° < ¢ < 60°. POLAR’s observing strip appears in the middle of the figure.

cg

Comparing figures 10.4 and 10.5, we see that the polarization of the CMB is enhanced
by a factor of ten, to levels which are within reach of POLAR assuming a sensitivity of
~ 1uK per-pixel for all 36 pixels. This figure reinforces the conclusions of Chapter 2: the
level of polarization is extremely sensitive to the ionization history of the universe, both
before and after recombination. We expect, then, that the observed polarization signal
will depend critically on the optical depth, 7, for photons back to the last scattering
surface. A preliminary estimate of the effect of reionization can be obtained by computing
the expected RMS polarization and associated experimental uncertainty for models of
a reionized universe. Figure 10.6 reinforces our claims that the effect of reionization is
most pronounced in the polarization, not the CMB. This effect allows the degeneracy
between parameters such as H, and 7 to be broken , which will ultimately allow [57] for
higher-precison estimates of both [57].

Recall in Chapter 2 we presenteed figure 2.5 which displayed Czn, for the power spec-
trum computed using CMBFAST for various totally reionized (ionized fraction x = 1)
scenarios, parameterized by the redshift of reionization z;. In Figure 10.7 we plot the

expected RMS polarization vs. z;, for 0 < z; < 105, along with the statistical 1o un-
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Figure 10.6: Simulated observations of CMB anisotropy and polarization from Madison, WI.
Power spectra are generated using CMBFAST and convolved with the POLAR beam size and
observing strategy to create realizations of the sky as seen from our observing location. Correlation
between anisotropy and polarization is taken into account. The solid lines correspond to total
reionization at z = 50, and the dotted lines correspond to no reionization. Note that the effect of
reionization is nearly unnoticeable for the anisotropy, while for the polarization its effect is quite
dramatic.
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Figure 10.7: Simulated Per-Pixel RMS polarization vs. redshift of reionization. Also shown is
POLAR’s expected 1o per-pixel error bars for ~ one-year of observations. No correlations have
been taken into account. Combining all 36 pixels would result in a reduction in the errors by a
factor of ~ 6.

certainties we expect based on our NET and observation time. The underlying power
spectrum is a generic CDM model with Q@ = 1,Qp = 0.05,~ = 0.65,A = 0, and pure
scalar perturbations. The inclusion of a tensor component should enhance the large an-
gular scale polarization [47], [116], so this figure underestimates the RMS polarization
predicted by some cosmological models. This figure suggests that POLAR . could begin to
detect polarization of the CMB at the 1o level if the universe became completely reionized

at a redshift z; > 45.
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10.4 Temperature-Polarization Cross-Correlation and COBE

CMB polarization can be decomposed into two components: one of which is spatially
correlated with the temperature anisotropy, and another, larger component which is un-
correlated. Ng & Ng [45] and Crittenden, Coulson, & Turok [116], demonstrate that, given
a high-resolution CMB temperature map, it would be possible to identify celestial regions
which are statistically more likely to posses higher levels of the correlated polarization
component. As shown in [117], the uncorrelated polarization component dominates the
correlated component by a factor of at least three.

For detector-noise limited polarization experiments, it can be advantageous to search
for polarization-anisotropy (QT') correlation in addition to polarization-polarization (QQ)
cross-correlation. If the noise in the temperature anisotropy map is negligible in compar-
ison with the noise of the polarization measurement, o, the error in (QT") will be linear
in o while the variance in the polarization auto-correlation function grows as 2. In this

limit it becomes advantageous to search for cross-correlation.

10.4.1 Correlations Between Temperature and Stokes Parameters

Due to the assumption that the universe is statistically isotropic we expect that two-
point correlation functions of the Stokes parameters will only depend on the angular
separation between the two points. This assumption is implicit, for example, when we
expand the temperature autocorrelation function into Legendre Polynomials rather that
spherical harmonics. Unfortunately, due the explicit reference to a particular coordinate
system for the definition of our experimentally measured Stokes Parameters, i.e., Q =
Tns—TEw, simply correlating @ and U in a particular coordinate system gives correlation

functions which depend on the positions of the points being correlated as well the angular
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separation [118]. This was the situation prior to Kamionkowski, Kosowsky, and Stebbins
(KKS) and Seljak and Zaldarriaga [55], [52].

As mentioned in Chapter 2, two prescriptions to specify coordinate independent param-
eters exist, either the expansion into rank-2 symmetric tensors on the celestial 2-sphere, or
into spin-weighted spherical harmonics. To obtain the real-space correlation functions of
Stokes parameters we define Q and U with respect to axes which are parallel and perpen-
dicular to the great arc (or geodesic) connecting the two points being correlated. So @, is
the difference in intensities in two linear-polarization states parallel and perpendicular to
the great arc connecting the two points, and U, is the difference in two linear-polarization
states which lie 45° away from the parallel and perpendicular[57]. This is reminiscent of
the more familiar notion of parallel transport in differential geometry, except now we are
computing the derivative of a spinor on a curved manifold rather than a (more-simple)
vector.

Since we have three observables T, Q,U we expect 3! different two-point correlation
functions to be relevant if the CMB can be treated as a gaussian random field. We denote
the six correlation functions as:

(TT), (U.U,), (Q;Q), (Q.T), (Q.U,), and (U,T). Due to the expected symmetry of
the universe under parity transformations we will find that @, is invariant under reflection
along the great arc connecting the two points being correlated, U, will change sign under
this symmetry transformation. T, being a scalar function, will obviously be invariant.

So we expect that the ensemble averages (QrUy) and (U,T') will be zero. A hint in this
direction was provided in Chapter 2 where we found that there were only four nonzero sets
of moments C'ZT, CZG , CC, and C’lT G, Correspondingly, four nonzero correlation functions

provide an equivalent statistical description.
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Following KKS, we now examine the auto and cross-correlation functions. First, for

reference, we start with the temperature auto-correlation function: (T'T'):

Since, as mentioned above, the correlation function depends only on the angular sepa-
ration of the two points, without loss of generality, we may choose one point to be at the
north pole, (0,0), and the other to be on the ¢ = 0 longitude at a distance @ from the

north pole, (0,0). Next we expand T'(f1) in terms of spherical harmonics and note that

Y(im)(0,0) = G0/ + 1)/ (47). So

cTo) = <T(0, 0) T(6,0) >

To To

- ¥ <a(Tl;L)alT,m,>Y(7m)(o,O)Y(l,m,)(e,O)

Iml'm/’
2041
= > Clowbmm | ——06moY(rmn (6,0
o 1 0l T 0Y(@m(0,0)

_ zlj 2l47tl CF P(cosB). (10.3)

For the (QQ) correlation function we have that:

where the Stokes parameter @), is defined as the difference in brightness between axes
parallel and perpendicular to the great arc connecting n; and fis. Again we are free to
choose one point to be at the north pole and another a distance 8 away along the ¢ = 0

longitude. This choice has the added advantage that the great arc connecting these two
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points is along the 6 direction, so we can use the ) defined in the (é, (j;) coordinate system.
As a consequence of the “hairy-ball” theorem of topology [119], in all choices of spherical
coordinate systems there will be two points (poles) where the azimuthal coordinate is ill-
defined. In the particular spherical coordinate system we are considering, the definition
of @ at the north pole is ambiguous. As long as we agree not to discuss the polarization
at the pole we can always consider a point on the ¢ = 0 longitude which is infinitesimally
close to the north pole; in other words, @(0,0) really means limg_,o Q(6,0). For the (UU)

correlation function, the derivation is similar, giving

2 +1 _
el =-% S—Ni PO G (g (cos 0) + CF Gy (cos 0)]. (10.5)
l

For the (T'Q) cross-correlation function,

ﬁ Qr n2
CRO) = < Th > f 0
fi1-Ng=cos

2 TG P2(cos ). (10.6)

10.4.2 The COBE DMR Instrument

The COBE DMR experiment performed its primary task exceptionally well: it made
the first unambiguous detection of the anisotropy of the CMB [120]. The success of
the instrument is largely attributable to the robust construction of the instrument, the
stable observing location, and observing strategy and analysis which were subsequently
carried out. In addition to its ability to detect the anisotropy of the CMB, COBE also
had the ability to detect the polarization of the CMB. Due to the complicated observation

strategy implemented in an effort to glean maximum information regarding the anisotropy,
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polarization results from COBE are not particularly restrictive [121].

The greatest usefulness of the COBE instrument towards a detection of polarization
of the CMB may be yet to come. As we will show, it is possible for an instrument such as
POLAR to detect the cross-correlation of polarization with the temperature anisotropy
without detecting the polarization auto-correlation itself. In a loose sense, since the tem-
perature anisotropy of the CMB observed today on all scales is the bears the imprint of
the quadrupole anisotropy at decoupling, and the polarization of the CMB is correlated
with the this quadrupole anisotropy as well, we expect that polarization and tempera-
ture anisotropy will be correlated. In fact, cross-correlation may provide the only link
between previous detections (of anisotropy), and the proposed measurements discussed in

this thesis.

10.4.3 Model and Data Input

To place interesting limits on the polarization-temperature cross-correlation function we
require two inputs in addition to the POLAR dataset: a well-sampled temperature anisotropy
map, and a theoretical model of the power spectrum. The power spectrum will depend
upon several cosmological parameters, one of which 7 — the optical depth due to reioniza-
tion, has a dramatic effect on the large angular scale polarization, and not the temperature
anisotropy. Thus, a significant detection of polarization-temperature cross-correlation may
actually prove to be the initial observable detected by POLAR. To prepare for this analy-
sis, in figure 10.8 we show the COBE temperature anisotropy map centered on POLAR’s
observing fields.

Given this map, we now require a model for the temperature-polarization cross-correlation

function. In addition to the anisotropy and polarization spectra, CMBFAST also computes
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Figure 10.8:  COBE Temperature Anisotropy Centered on POLAR’s Observing Fields. From
right to left the range of RA is 0h < RA < 24h, and from top to bottom the range of Declination

is 20° < § < 60°. POLAR’S observ1n%<str1p appears in the middle of the figure.
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Figure 10.9: Simulated polarization-temperature cross-correlation map made using CMBFAST
Total reionization at z = 50 is assumed. From right to left the range of RA is Oh < RA < 24h, and
from top to bottom the range of Declination is 20° < § < 60°. POLAR’s observing strip appears
in the middle of the figure.
(QT), which can be used to generate a sky-realization. Figure 10.9 shows a simulation of
the polarization-temperature cross-correlation expected for a model with complete reion-
ization at z = 50.

This completes the list of quantities needed to probe the existance of a cosmologically

significant detection of polarization-temperature cross-correlation. Once a complete season

of data from POLAR is obtained we will begin the process of probing the cross-correlation

using a standard likelihood analysis such as that presented in [122]
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Chapter 11

Conclusions

We have demonstrated that the detection of the polarization of the CMB is difficult but
technologically feasible. A detection would permit the discrimination between heretofore
degenerate theoretical predictions. Polarization of the CMB has a unique signature in
both real and Fourier space, as well as distinct spectral characteristics. A detection of po-
larization, in conjunction with the current detections of CMB anisotropy could be the best
available probe of the ionization history of the pre-galactic medium. This epoch of cosmic
evolution is of great interest, and supplemental information from polarization detection
could greatly advance our knowledge of the formation of structure in the early universe.
The current generation of anisotropy measurements are sufficiently refined that the fun-
damental parameters of classical cosmology are beginning to be determined. Detection
of polarization of the CMB also promises numerous dividends throughout cosmology, and
one readily observes that the status of polarization observations today is reminiscent of
the status of anisotropy measurements a decade ago.

“Better is the end of a thing than the beginning thereof.” - Ecclesiastes
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