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ABSTRACT

We describe our methodology for comparing theWilkinsonMicrowave Anisotropy Probe (WMAP) measure-
ments of the cosmic microwave background (CMB) and other complementary data sets to theoretical models.
The unprecedented quality of the WMAP data and the tight constraints on cosmological parameters that are
derived require a rigorous analysis so that the approximations made in the modeling do not lead to significant
biases.We describe our use of the likelihood function to characterize the statistical properties of the microwave
background sky. We outline the use of the Monte Carlo Markov Chains to explore the likelihood of the data
given a model to determine the best-fit cosmological parameters and their uncertainties. We add to theWMAP
data the ‘e700 Cosmic Background Imager (CBI) and Arcminute Cosmology Bolometer Array Receiver
(ACBAR) measurements of the CMB, the galaxy power spectrum at z � 0 obtained from the Two-Degree
Field Galaxy Redshift Survey (2dFGRS), and the matter power spectrum at z � 3 as measured with the Ly�
forest. These last two data sets complement the CMB measurements by probing the matter power spectrum of
the nearby universe. Combining CMB and 2dFGRS requires that we include in our analysis a model for galaxy
bias, redshift distortions, and the nonlinear growth of structure. We show how the statistical and systematic
uncertainties in themodel and the data are propagated through the full analysis.

Subject headings: cosmic microwave background — cosmological parameters —
cosmology: observations — methods: data analysis — methods: statistical

1. INTRODUCTION

Cosmic microwave background (CMB) experiments are
powerful cosmological probes because the early universe is
particularly simple and because the fluctuations over
angular scales � > 0=2 are described by linear theory
(Peebles & Yu 1970; Bond & Efstathiou 1984; Zaldarriaga
& Seljak 2000). Exploiting this simplicity to obtain precise
constraints on cosmological parameters requires that we
accurately characterize the performance of the instrument
(Jarosik et al. 2003b; Page et al. 2003b; Barnes et al. 2003;
Hinshaw et al. 2003a), the properties of the foregrounds
(Bennett et al. 2003a), and the statistical properties of the
microwave sky.

The primary goal of this paper is to present our approach
to extracting the cosmological parameters from the temper-
ature-temperature angular power spectrum (TT) and the

temperature-polarization angular cross-power spectrum
(TE). In companion papers, we present the TT (Hinshaw
et al. 2003a) and TE (Kogut et al. 2003) angular power spec-
tra and show that the CMB fluctuations may be treated as
Gaussian (Komatsu et al. 2003).

Our basic approach is to constrain cosmological
parameters with a likelihood analysis first of the Wilkinson
Microwave Anisotropy Probe (WMAP) TT and TE spectra
alone, then jointly with other CMB angular power spectrum
determinations at higher angular resolution, and finally of
all CMB power spectra data jointly with the power spec-
trum of the large-scale structure (LSS). In x 2 we describe
the use of the likelihood function for the analysis of micro-
wave background data. This builds on the Hinshaw et al.
(2003b) methodology for determining the TT spectrum and
its curvature matrix and Kogut et al. (2003), who describe
our methodology for determining the TE spectrum. In x 3
we describe our use of Markov Chain Monte Carlo
(MCMC) techniques to evaluate the likelihood function of
model parameters. While WMAP’s measurements are a
powerful probe of cosmology, we can significantly enhance
their scientific value by combining the WMAP data with
other astronomical data sets. This paper also presents our
approach for including external CMB data sets (x 4), LSS
data (x 5), and Ly� forest data (x 6). When including exter-
nal data sets, the reader should keep in mind that the physics
and the instrumental effects involved in the interpretation of
these external data sets (especially 2dFGRS and Ly�) are
much more complicated and less well understood than for
WMAP data. Nevertheless, we aim to match the rigorous
treatment of uncertainties in the WMAP angular power
spectrum with the inclusion of known statistical and
systematic effects (of the data and of the theory), in the
complementary data sets.
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2. LIKELIHOOD ANALYSIS OF WMAP ANGULAR
POWER SPECTRA

The first goal of our analysis program is to determine the
values and confidence levels of the cosmological parameters
that best describe theWMAP data for a given cosmological
model. We also wish to discriminate between different
classes of cosmological models, in other words, to assess
whether a cosmological model is an acceptable fit toWMAP
data.

The ultimate goal of the likelihood analysis is to find a set
of parameters that give an estimate of hC‘i, the ensemble
average of which the realization on our sky11 is Csky

‘ . The
likelihood function, L½ĈC‘jCth

‘ ðaÞ�, yields the probability of
the data given a model and its parameters (a). In our nota-
tion ĈC‘ denotes our best estimator of C

sky
‘ (Hinshaw et al.

2003a) and Cth
‘ is the theoretical prediction for angular

power spectrum. From Bayes’s theorem, we can split the
expression for the probability of a model given the data as

P
�
�jĈC‘

�
¼ L

�
ĈCjCth

‘ ð�Þ‘
�
Pð�Þ ; ð1Þ

wherePðaÞ describes our priors on cosmological parameters
and we have neglected a normalization factor that does not
depend on the parameters . Once the choice of the priors is
specified, our estimator of hC‘i is given by Cth

‘ evaluated at
the maximum ofPðajĈC‘Þ.

2.1. Likelihood Function

One of the generic predictions of inflationary models is
that fluctuations in the gravitational potential have
Gaussian random phases. Since the physics that governs the
evolution of the temperature and metric fluctuations is
linear, the temperature fluctuations are also Gaussian. If we
ignore the effects of nonlinear physics at z < 10 and the
effect of foregrounds, then all of the cosmological informa-
tion in the microwave sky is encoded in the temperature and
polarization power spectra. The leading-order low-redshift
astrophysical effect is expected to be gravitational lensing of
the CMB by foreground structures. We ignore this effect
here as it generates a less than 1% covariance in the TT
angular power spectrum on WMAP angular scales (Hu
2001; see also Spergel et al. 2003, x 3).

There are several expected sources of noncosmological
signal and of non-Gaussianity in the microwave sky. The
most significant sources on the full sky are Galactic
foreground emission, radio sources, and galaxy clusters.
Bennett et al. (2003b) show that these contributions are
greatly reduced if we restrict our analysis to a cut sky that
masks bright sources and regions of bright Galactic emis-
sion. The residual contribution of these foregrounds is fur-
ther reduced by the use of external templates to subtract
foreground emission from the Q-, V-, and W-band maps.
Komatsu et al. (2003) find no evidence for deviations from
Gaussianity on this template-cleaned cut sky. While the sky
cut greatly reduces foreground emission, it has the unfortu-
nate effect of coupling multipole modes on the sky so
that the power spectrum covariance matrix is no longer
diagonal. The goal of this section is to include this
covariance in the likelihood function.

The likelihood function for the temperature fluctuations
observed by a noiseless experiment with full-sky coverage
has the form

L TjCth
l

� �
/ exp½�ðTS�1TÞ=2�ffiffiffiffiffiffiffiffiffiffiffi

detS
p ; ð2Þ

where T denotes our temperature map and
Sij ¼

P
‘ð2‘þ 1ÞCth

‘ P‘ðn̂nin̂njÞ=ð4�Þ, where the P‘ are the
Legendre polynomials and n̂ni is the pixel position on the
map. If we expand the temperature map in spherical har-
monics, Tðn̂nÞ ¼

P
‘m a‘mY‘m, then the likelihood function

for each a‘m has a simple form:

L TjCth
‘

� �
/
Y
‘m

exp½� a‘mj j2=ð2Cth
‘ Þ�ffiffiffiffiffiffiffi

Cth
‘

q : ð3Þ

Since we assume that the universe is isotropic, the likelihood
function is independent of m. Thus, we can sum over m and
rewrite the likelihood function as

�2 lnL ¼
X
‘

ð2‘þ 1Þ ln
Cth

‘

ĈC‘

 !
þ ĈC‘

Cth
‘

� 1

" #
ð4Þ

up to an irrelevant additive constant. Here, for a full-sky,
noiseless experiment, we have identified

P
m a‘mj j2=ð2‘þ 1Þ

with ĈC‘. Note that the likelihood function depends only on
the angular power spectrum. In this limit, the angular power
spectrum encodes all of the cosmological information in the
CMB.

Characteristics of the instrument are also included in the
likelihood analysis. Jarosik et al. (2003a) show that the
detector noise is Gaussian (see their Fig. 6 and x 3.4); conse-
quently, the pixel noise in the sky map is also Gaussian
(Hinshaw et al. 2003b). The resolution ofWMAP is quanti-
fied with a window function, w‘ (Page et al. 2003a). Thus,
the likelihood function for our CMBmap has the same form
as equation (2), but with S replaced by C ¼ ŜS þN , where
N is the nearly diagonal noise correlation matrix12 and
ŜSij ¼

P
‘ð2‘þ 1ÞCth

‘ w‘P‘ðn̂ni x n̂njÞ=ð4�Þ.
If foreground removal did not require a sky cut and if the

noise were uniform and purely diagonal, then the likelihood
function for the WMAP experiment would have the form
(Bond, Jaffe, &Knox 2000)

�2 lnL ¼
X
‘

ð2‘þ 1Þ ln
Cth

‘ þN‘

~CC‘

 !
þ

~CC‘

Cth
‘ þN‘

� 1

" #
;

ð5Þ

where the effective biasN‘ is related to the noise biasN‘ as

N‘ ¼ N‘=w‘‘ð‘þ 1Þ=ð2�Þ and

~CC‘ ¼ ‘ð‘þ 1Þ=ð2�Þ
X
m

a‘mj j2=ð2‘þ 1Þ=w‘ :

Note that N‘ and Cth
‘ appear together in equation (5)

because the noise and cosmological fluctuations have the

11 Throughout this paper we use the convention that C‘ ¼
‘ð‘þ 1ÞC‘=ð2�Þ.

12 1/f noise makes a non–random-phase contribution to the detector
noise and leads to off-diagonal terms in the noise matrix. By making the
noise N0 a function of ‘ (denoted by N‘) we include this effect to leading
order (Hinshaw et al. 2003b).
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same statistical properties: they both are Gaussian random
fields.

Because of the foreground sky cut, different multipoles
are correlated and only a fraction of the sky, fsky, is used in
the analysis. In this case, it becomes computationally
prohibitive to compute the exact form of the likelihood
function. There are several different approximations used in
the CMB literature for the likelihood function. At large ‘,
equation (5) is often approximated as Gaussian:

lnLGauss / �1
2

X
‘‘0

ðCth
‘ � ĈC‘ÞQ‘‘0 ðCth

‘0 � ĈC‘0 Þ ; ð6Þ

where Q‘‘0 , the curvature matrix, is the inverse of the power
spectrum covariance matrix.

The power spectrum covariance encodes the uncertainties
in the power spectrum due to cosmic variance, detector
noise, point sources, the sky cut, and systematic errors.
Hinshaw et al. (2003a) and x 2.2 describe the various terms
that enter into the power spectrum covariance matrix.

Since the likelihood function for the power spectrum is
slightly non-Gaussian, equation (6) is a systematically biased
estimator. Bond et al. (2000) suggest using a lognormal
distribution,LLN (Bond et al. 2000; Sievers et al. 2002):

�2 lnLLN ¼
X
‘‘0

zth‘ � ẑz‘
� �

Q‘‘0 z
th
‘0 � ẑz‘0

� �
; ð7Þ

where zth‘ ¼ lnðCth
‘ þN‘Þ, ẑz‘ ¼ lnðĈC‘ þN‘Þ, and Q‘‘0 is

the local transformation of the curvature matrix Q to the
lognormal variables z‘,

Q‘‘0 ¼ ðĈC‘ þN‘ÞQ‘‘0 ðĈC‘0 þN‘0 Þ : ð8Þ

We find that, for the WMAP data, both equations (6) and
(7) are biased estimators. We use an alternative approxima-
tion of the likelihood function for the C‘ values (eq. [11])
motivated by the following argument.

We can expand the exact expression for the likelihood
(eq. [4]) around its maximum by writing ĈC‘ ¼ Cth

‘ ð1þ �Þ.
Then, for a single multipole ‘,

�2 lnL‘ ¼ ð2‘þ 1Þ½�� lnð1þ �Þ�

’ ð2‘þ 1Þ �2

2
� �3

3
þ O �4

� �� �
: ð9Þ

We note that the Gaussian likelihood approximation is
equivalent to the above expression truncated at �2:

�2 lnLGauss;‘ / ð2‘þ 1Þ=2½ðĈC‘ � Cth
‘ Þ=Cth

‘ �
2

’ ð2‘þ 1Þ�2=2 :

The Bond, Jaffe, & Knox (1998) expression for the log-
normal likelihood for the equal variance approximation is

�2 lnL0
LN ¼ ð2‘þ 1Þ

2
ln

ĈC‘

Cth
‘

 !" #2
’ ð2‘þ 1Þ �2

2
� �3

2

� 	
:

ð10Þ

Thus, our approximation of the likelihood function is given
by the form

lnL ¼ 1
3 lnLGauss þ 2

3 lnL
0
LN ; ð11Þ

whereL0
LN has the form of equation (7) apart from Q‘‘0 that

is not given by equation (8) but by

Q‘‘0 ¼ Cth
‘ þN‘

� �
Q‘‘0 C

th
‘0 þN‘0

� �
: ð12Þ

We tested this form of the likelihood by making 100,000
full-sky realizations of the TT angular power spectrum Cth

‘ .
For each realization, the maximum likelihood amplitude of
fluctuations in the underlying model was found and the
mean value was computed. Since we kept all other model
parameters fixed, this one-dimensional maximization was
computationally trivial. The Gaussian approximation (eq.
[6]) was found to systematically overestimate the amplitude
of the fluctuations by ’0.8%, while the lognormal approxi-
mation underestimates it by ’0.2%. Equation (11) was
found to be accurate to better than 0.1%.

2.2. CurvatureMatrix

We obtain the curvature matrix in a form that can be used
in the likelihood analysis from the power spectrum cova-
riance matrix for ĈC‘ computed in Hinshaw et al. (2003a).
The matrix is composed of several terms of the following
form:

�‘‘0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D‘D‘0

p
�K‘‘0 � r‘‘0
� �

þ �‘‘0 ; ð13Þ

where �‘‘0 is the coupling introduced by the beam uncertain-
ties and point-source subtraction (�‘‘0 ¼ 0 if ‘ ¼ ‘0), �K

denotes the Kronecker delta function, and D‘ denotes the
diagonal terms,

D‘ ¼ 2
Cth

‘ þN‘

� �2
ð2‘þ 1Þ f 2sky

: ð14Þ

The quantity r‘‘0 encodes the mode coupling due to the
sky cut and is the dominant off-diagonal term (it is set to
be 0 if ‘ ¼ ‘0). The mode-coupling coefficient, r‘‘0 , is
most easily defined in terms of the curvature matrix,
Q‘‘0 ¼ D�1

‘ �K‘‘0 þ r‘‘0=
ffiffiffiffiffiffiffiffiffiffiffiffi
D‘D‘0

p
(see Hinshaw et al. 2003b).13

The sky cut has two significant effects on the power spec-
trum covariance matrix. Because less data are used, the
covariance matrix is increased by a factor of fsky. An addi-
tional factor of fsky arises from the coupling to nearby
‘-modes. The additional term does not lead to a loss of
information as nearby ‘-modes are slightly anticorrelated.

Hinshaw et al. (2003b) describe the beam uncertainty and
point-source terms included in N‘ and �‘‘0 . The beam and
calibration uncertainties depend on the realization of the
angular power spectrum on the skyCsky

‘ , not on the theoreti-
cal angular power spectrum Cth

‘ ; thus, they should not
change as, in exploring the likelihood surface, we change
Cth

‘ in the expression for D‘. This differs from other
approaches (e.g., Bridle et al. 2002). Rescaling all the contri-
butions to the off-diagonal terms in the covariance matrix
with Cth

‘ is not correct and leads to a 2% bias in our estima-
tor of hC‘i, which propagates, for example, into a �2%
error on the matter density parameter �m or �2% error on
the spectral slope ns.

13 In this equation we have set to zero the beam and point-source
uncertainties. This is because the coupling coefficient is computed for an
ideal cut sky.
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We find the curvature matrix by inverting equation (13):

Q‘‘0 ¼ D�1
‘ �K‘‘0 �

�‘‘0

D‘D‘0
þ r‘‘0ffiffiffiffiffiffiffiffiffiffiffiffi

D‘D‘0
p ; ð15Þ

where we have assumed that the off-diagonal terms are
small. For cosmological models that have Cth

‘ very different
from the best-fit ĈC‘, equation (15) does not yield the inverse
of equation (13): in these cases the inversion of �‘‘0 needs to
be computed explicitly.

We do not propagate theWMAP 0.5% calibration uncer-
tainty in the covariance matrix as this uncertainty does not
affect cosmological parameter determinations. This system-
atic only affects the power spectrum amplitude constraint at
the 0.5% level, while the statistical error on this quantity is
�10%.

2.2.1. Calibration withMonte Carlo Simulations

The angular power spectrum is computed using three dif-
ferent weightings: uniform weighting in the signal-dominated
regime (‘ < 200), an intermediate weighting scheme for
200 < ‘ < 450, and Nobs weighting (for the noise-dominated
regime 450 < ‘ � 900; Hinshaw et al. 2003b). Uniform
weighting is a minimum variance weighting in the signal-
dominated regime, and Nobs weighting is a minimum
variance in the noise-dominated regime. However, in the
intermediate regime the weighting schemes are not necessa-
rily optimal and the analytic expression for the covariance
matrix might thus underestimate the errors. To ensure that
we have the appropriate errors, we calibrate the covariance
matrix from 100,000Monte Carlo realizations of the sky with
theWMAP noise level, symmetrized beams, and the Kp2 sky
cut. A good approximation of the curvature matrix can
be obtained by using equations (13)–(15), but substituting
N‘ and fsky with Neff

‘ and f effsky calibrated from the
Monte Carlo simulations, as shown in Figures 1 and 2.

We find that for ‘ < 200 the weighting scheme is nearly
optimal. The power spectrum covariance matrix (eq. [13])
gives a correct estimate of the error bars; thus, we do not

need to calibrate N‘ or fsky. We have computed an effective
reduced �2,14 �2

eff=� � �2 lnL=�, where � is the number of
degrees of freedom. The effective reduced �2 from the
Monte Carlo simulations in this ‘ range is consistent with
unity.

In the intermediate regime our Ansatz power spectrum
covariance matrix (eq. [13]) slightly underestimates the
errors. This can be corrected by computing the covariance
matrix for an effective fraction of the sky f effsky as shown in
Figure 1. The jagged line is the ratio obtained from the
Monte Carlo simulations, while the smooth curve shows the
fit to f effsky we adopt,

f effsky

fsky
¼ 0:813þ 0:001914‘� 7:405� 10�6‘2 þ 8:65� 10�9‘3

ð16Þ

for 200 < ‘ < 450.
For ‘ > 450, in the noise-dominated regime, the weight-

ing is asymptotically optimal for ‘ ! 1. However, since we
are using a smaller fraction of the sky, we need again to cor-
rect the fsky factor. This numerical factor describes the
reduction in effective sky coverage due to weighting the
well-observed ecliptic poles more heavily than the ecliptic
plane (see Fig. 3 of Bennett et al. 2003a). We fit this factor to
the numerical simulations of the TT spectrum covariance
matrix. Kogut et al. (2003) note that this same factor is also
a good fit to the Monte Carlo simulations of the TE spec-
trum covariance matrix. For the noise-dominated regime,
we define an effective sky fraction f effsky ¼ fsky=1:14 and an
effective noise given by

Neff
‘ ¼ ½�sim

‘‘ ð f effskyÞ
2ð2‘þ 1Þ=2�1=2 � Csim

‘ ;

which can be obtained from the noise bias of the maps N‘

by a noise correction factor Neff
‘ =N‘. This is shown in

Figure 2, where the smooth curve is the fit we adopt to this

14 This is not exactly the reduced �2 because the likelihood is non-
Gaussian especially at low ‘.

Fig. 1.—Ratio of the effective sky coverage to the actual sky coverage.
This correction factor calibrates the expression for the Fisher matrix to the
value obtained from the Monte Carlo approach. Here we show the ratio
obtained from 100,000 simulations ( jagged line); the smooth curve shows
the fit we use, eq. (16). Note that, since we are switching between weighting
schemes, the correction factors are not expected to smoothly interpolate
between regimes.

Fig. 2.—Correction factor for the noise. The lines are as in Fig. 1. Note
that, since we are switching between weighting schemes, the correction
factors are not expected to smoothly interpolate between regimes.
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correction factor,

Neff
‘

N‘
¼ 1:046� 0:0002346ð‘� 450Þ

þ 3:204� 10�7ð‘� 450Þ2 ð17Þ

for ‘ > 450.
This calibration of the covariance matrix from the Monte

Carlo simulations allows us to use the effective reduced �2

as a tool to assess goodness of fit. It can also be used to
determine the relative likelihood of different models (e.g.,
Peiris et al. 2003).

2.3. Likelihood for the TEAngular Power Spectrum

Since the TE signal is noise dominated, we adopt a
Gaussian likelihood, where the curvature matrix is given by

QTE
‘‘0 ¼ DTE

‘

� ��1
�K‘‘0 þ

rTE‘‘0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTE

‘ DTE
‘0

q : ð18Þ

The expression for DTE
‘ is given by equation (10) of Kogut

et al. (2003), and the coupling coefficient due to the sky cut,
rTE‘‘0 , is obtained from 100,000 Monte Carlo realizations of
the sky withWMAPmask and noise level. The TE spectrum
is computed with noise inverse weighting; in this regime r‘‘0
depends only on the difference D‘ ¼ ‘� ‘0 and is set to be 0
at separations D‘ > 15. We use all multipoles 2 � ‘ � 450,
as comparison with theMonte Carlo realizations shows that
in this regime equation (18) correctly estimates the TE
uncertainties. We have also verified on the simulations that
the Gaussian likelihood is an unbiased estimator and that
the effective reduced �2 is centered around 1.

The amplitude of the covariance between TT and TE
power spectra is �~rr=ð1þ CEE

‘ =nEE‘ Þ, where ~rr is the correla-
tion term ðCTE

‘ Þ2ðCEE
‘ CTT

‘ Þ�1 ’ 0:2. Since CEE
‘ =nEE‘ 5 0:25

for 1 yr data, we neglect this term, but we will include it in
the 2+ yr analysis as it becomes increasingly important.

We provide a subroutine15 that reads in a set of Cth
‘ (TT,

or TE, or both) and returns the likelihood for the WMAP
data set, including all the effects described in this section.

3. MARKOV CHAIN MONTE CARLO
LIKELIHOOD ANALYSIS

The analysis described in Spergel et al. (2003) and Peiris
et al. (2003) is numerically demanding. At each point in the
six-dimensional (or more) parameter space a new model
from CMBFAST16 (Seljak & Zaldarriaga 1996) is com-
puted. Our version of the code incorporates a number of
corrections and uses the RECFAST (Seager, Sasselov, &
Scott 1999) recombination routine. Most of the likelihood
calculations were done with four shared memory 32 CPU
SGI Origin 300 with 600 MHz processors. With eight pro-
cessors per calculation, each evaluation of CMBFAST for
‘ < 1500 for a flat reionized �-dominated universe requires
3.6 s. (The scaling is not linear; with 32 processors each
evaluation requires 1.62 s.)

A grid-based likelihood analysis would have required
prohibitive amounts of CPU time. For example, a coarse
grid (�20 grid points per dimension) with six parameters
requires�6:4� 107 evaluations of the power spectra. At 1.6
s per evaluation, the calculation would take �1200 days.
Christensen & Meyer (2000) proposed using MCMC to
investigate the likelihood space. This approach has become
the standard tool for CMB analyses (e.g., Christensen et al.
2001; Knox, Christensen, & Skordis 2001; Lewis & Bridle
2002; Kosowsky, Milosavljevic, & Jimenez 2002) and is
the backbone of our analysis effort. For a flat reionized
�-dominated universe, we can evaluate the likelihood
�120,000 times in less than 2 days using four sets of eight
processors. As we explain below, this is adequate for finding
the best-fit model and for reconstructing the 1 and 2 �
confidence levels for the cosmological parameters.

We refer the reader to Gilks, Richardson, & Spiegelhalter
(1996) for more information about MCMC. Here we only
provide a brief introduction to the subject and concentrate
on the issue of convergence.

3.1. Markov ChainMonte Carlo

MCMC is a method to simulate posterior distributions.
In particular, we simulate observations from the posterior
distribution Pð�jxÞ, of a set of parameters � given event x,
obtained via Bayes’s theorem,

Pð�jxÞ ¼ Pðxj�ÞPð�ÞR
Pðxj�ÞPð�Þd�

; ð19Þ

where Pðxj�Þ is the likelihood of event x given the model
parameters � and P(�) is the prior probability density. For
our application theWMAP � denotes a set of cosmological
parameters (e.g., for the standard, flat �CDM model these
could be the cold dark matter density parameter �c, the
baryon density parameter �b, the spectral slope ns, the
Hubble constant [in units of 100 km s�1 Mpc�1] h, the opti-
cal depth 	 , and the power spectrum amplitude A), and
event xwill be the set of observed ĈC‘.

The MCMC generates random draws (i.e., simulations)
from the posterior distribution that are a ‘‘ fair ’’ sample of
the likelihood surface. From this sample, we can estimate all
of the quantities of interest about the posterior distribution
(mean, variance, confidence levels). The MCMC method
scales approximately linearly with the number of parame-
ters, thus allowing us to perform likelihood analysis in a
reasonable amount of time.

A properly derived and implementedMCMC draws from
the joint posterior density Pð�jxÞ once it has converged to
the stationary distribution. The primary consideration in
implementing MCMC is determining when the chain has
converged. After an initial ‘‘ burn-in ’’period, all further
samples can be thought of as coming from the stationary
distribution. In other words, the chain has no dependence
on the starting location.

Another fundamental problem of inference fromMarkov
chains is that there are always areas of the target distribu-
tion that have not been covered by a finite chain. If the
MCMC is run for a very long time, the ergodicity of the
Markov chain guarantees that eventually the chain will
cover all the target distribution, but in the short term the
simulations cannot tell us about areas where they have
not been. It is thus crucial that the chain achieves good
‘‘mixing.’’ If the Markov chain does not move rapidly

15 The routine is available at http://lambda.gsfc.nasa.gov.
16 We used the parallelized ver. 4.1 of CMBFAST developed in

collaboration with Uros Seljak andMatias Zaldarriaga.
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throughout the support of the target distribution because of
poor mixing, it might take a prohibitive amount of time for
the chain to fully explore the likelihood surface. Thus, it is
important to have a convergence criterion and a mixing
diagnostic. Plots of the sampledMCMC parameters or like-
lihood values versus iteration number are commonly used
to provide such criteria (Fig. 3, left-hand panel). However,
samples from a chain are typically serially correlated; very
high autocorrelation leads to little movement of the chain
and thus makes the chain ‘‘ appear ’’ to have converged. For
a more detailed discussion see Gilks et al. (1996). Using an
MCMC that has not fully explored the likelihood surface
for determining cosmological parameters will yield wrong
results. We describe below the method we use to ensure
convergence and good mixing.

3.2. Convergence andMixing

We use the method proposed by Gelman & Rubin (1992)
to test for convergence and mixing. They advocate compar-
ing several sequences drawn from different starting points
and checking to see that they are indistinguishable. This
method not only tests convergence but can also diagnose
poor mixing. For any analysis of the WMAP data, we
strongly encourage the use of a convergence criterion.

Let us consider M chains (the analyses in Spergel et al.
2003 and Peiris et al. 2003 use four chains unless otherwise
stated) starting at well-separated points in parameter space;
each has 2N elements, of which we consider only the last N:
fy j

ig, where i ¼ 1; . . . ;N and j ¼ 1; . . . ;M; i.e., y denotes a
chain element (a point in parameter space), the index i runs
over the elements in a chain, and the index j runs over the
different chains. We define the mean of the chain

�yy j ¼ 1

N

XN
i¼1

y j
i ð20Þ

and the mean of the distribution

�yy ¼ 1

NM

XNM

ij¼1

y j
i : ð21Þ

We then define the variance between chains as

Bn ¼
1

M � 1

XM
j¼1

�yy j � �yy
� �2 ð22Þ

and the variance within a chain as

W ¼ 1

MðN � 1Þ
X
ij

ðy j
i � �yy jÞ2 : ð23Þ

The quantity

R̂R ¼ N � 1ð Þ=N½ �W þ Bn 1þ 1=Mð Þ
W

ð24Þ

is the ratio of two estimates of the variance in the target dis-
tribution: the numerator is an estimate of the variance that
is unbiased if the distribution is stationary, but it is other-
wise an overestimate. The denominator is an underestimate
of the variance of the target distribution if the individual
sequences did not have time to converge.

The convergence of the Markov chain is then monitored
by recording the quantity R̂R for all the parameters and run-
ning the simulations until the values for R̂R are always less
than 1.1. A. Gelman (Kaas et al. 1997) suggests to use values
for R̂R < 1:2. Here we conservatively adopt the criterion
R̂R < 1:1 as our definition of convergence. We have found
that the four chains will sometimes go in and out of conver-
gence as they explore the likelihood surface, especially if the
number of points already in the chain is small. To avoid this,
one could run many chains simultaneously or run one chain
for a very long time (e.g., Panter, Heavens, & Jimenez
2002). Because of CPU-time constraints, we run four chains

Fig. 3.—Unconverged Markov chains. The left-hand panel shows a trace plot of the likelihood values vs. iteration number for one MCMC (these are the
first 3000 steps from one of our �CDMmodel runs). Note the burn-in for the first �100 steps. In the right-hand panel, red dots are points of the chain in the
(n,A)-plane after discarding the burn-in. Green dots are from anotherMCMC for the same data set and the samemodel. It is clear that, although the trace plot
may appear to indicate that the chain has converged, it has not fully explored the likelihood surface. Using either of these two chains at this stage will give
incorrect results for the best-fit cosmological parameters and their errors.
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until they fulfill both of the following criteria: (1) they have
reached convergence and (2) each chain contains at least
30,000 points. In addition to minimizing chance deviations
from convergence, we find that this many points are needed
to be able to robustly reconstruct the 1 and 2 � levels of the
marginalized likelihood for all the parameters. For most
chains, the burn-in time is relatively rapid, so that we only
discard the first 200 points in each chain; however, the
results are not sensitive to this procedure.

3.3. Markov Chains in Practice

In this section we explain the necessary steps to run an
MCMC for the CMB temperature power spectrum. It is
straightforward to generalize these instructions to include
the temperature-polarization power spectrum and other
data sets. The MCMC is essentially a random walk in
parameter space, where the probability of being at any posi-
tion in the space is proportional to the posterior probability.

Here is our basic approach:

1. Start with a set of cosmological parameters f�1g and
compute theC1

‘ and the likelihoodL1 ¼ LðC1th
‘ jĈC‘Þ.

2. Take a random step in parameter space to obtain a
new set of cosmological parameters f�2g. The probability
distribution of the step is taken to be Gaussian in each direc-
tion i with rms given by �i. We will refer below to �i as the
‘‘ step size.’’ The choice of the step size is important to
optimize the chain efficiency (see x 3.4.2).
3. Compute the C2th

‘ for the new set of cosmological
parameters and their likelihoodL2.
4a. If L2=L1 � 1, ‘‘ take the step,’’ i.e., save the new set

of cosmological parameters f�2g as part of the chain, then
go to step 2 after the substitution f�1g ! f�2g.
4b. IfL2=L1 < 1, draw a random number x from a uni-

form distribution from 0 to 1. If x � L2=L1, ‘‘ do not take
the step,’’ i.e., save the parameter set f�1g as part of the
chain and return to step 2. If x < L2=L1, ‘‘ take the step,’’
i.e., do as in step 4a.
5. For each cosmological model run four chains starting

at randomly chosen, well-separated points in parameter
space. When the convergence criterion is satisfied and the
chains have enough points to provide reasonable samples
from the a posteriori distributions (i.e., enough points to be
able to reconstruct the 1 and 2 � levels of the marginalized
likelihood for all the parameters), stop the chains.

It is clear that the MCMC approach is easily generalized to
compute the joint likelihood ofWMAP data with other data
sets.

3.4. ImprovingMCMCEfficiency

The Markov chain efficiency can be improved in different
ways. We have tuned our algorithm by reparameterization
and optimization of the step size.

3.4.1. Reparameterization

Degeneracies and poor parameter choices slow the rate of
convergence and mixing of the Markov chain. There is one
near-exact degeneracy (the geometric degeneracy) and sev-
eral approximate degeneracies in the parameters describing
the CMB power spectrum (Bond et al. 1994; Efstathiou &
Bond 1999). The numerical effects of these degeneracies are
reduced by finding a combination of cosmological parame-
ters (e.g., �c, �b, h) that have essentially orthogonal effects

on the angular power spectrum. The use of such parameter
combinations removes or reduces degeneracies in the
MCMC and hence speeds up convergence and improves
mixing because the chain does not have to spend time
exploring degeneracy directions. Kosowsky et al. (2002)
introduced a set of reparameterizations to do just this. In
addition, these new parameters reflect the underlying
physical effects determining the form of the CMB power
spectrum (we refer to these as physical parameters). This
leads to particularly intuitive and transparent parameter
dependencies of the CMB power spectrum.

Following Kosowsky et al. (2002), we use a core set of six
physical parameters. There are two parameters for the
physical energy densities of cold dark matter, !c � �ch2,
and baryons, !b � �bh2. There is a parameter for the
characteristic angular scale of the acoustic peaks,

�A ¼ rsðadecÞ
dAðadecÞ

; ð25Þ

where adec is the scale factor at decoupling,

rsðadecÞ ¼
c

H0

ffiffiffi
3

p
Z adec

0



1þ 3�b

4�


� 	�
ð1� �Þx2

þ ��x
1 3w þ �mxþ �rad

���1=2

dx ð26Þ

is the sound horizon at decoupling, and

dAðadecÞ ¼
c

H0

Z 1

adec

�
ð1� �Þx2 þ ��x

1 3w

þ �mxþ �rad

��1=2
dx ð27Þ

is the angular diameter distance at decoupling, where H0

denotes the Hubble constant and c is the speed of light. Here
�m ¼ �c þ �b, �� denotes the dark energy density parame-
ter, w is the equation of state of the dark energy component,
� ¼ �m þ ��, and the radiation density parameter
�rad ¼ �
 þ ��, where �
 and �� are the photon and neu-
trino density parameters, respectively. For reionization we
use the physical parameter Z � expð�2	Þ, where 	 denotes
the optical depth to the last scattering surface (not the
decoupling surface). The remaining two core parameters are
the spectral slope of the scalar primordial density perturba-
tion power spectrum, ns, and the overall amplitude of the
primordial power spectrum, A. Both are normalized at
k ¼ 0:05Mpc�1 (‘ � 700).

For more complex models we add other parameters as
described in Spergel et al. (2003) and Peiris et al. (2003) and
in x 5. To investigate nonflat models, we use the vacuum
energy, !� � ��h2. Other examples include the tensor
index, nt, the tensor-to-scalar ratio, r, and the running of the
scalar spectral index, dns=d ln k.

Here we relate the input parameter for the overall nor-
malization, A, as in the CMBFAST code (ver. 4.1 with
UNNORM option), to the amplitude of primordial comov-
ing curvature perturbations R, D2

Rðk0Þ � ðk3=2�2Þh Rj j2i.
We also relate our convention for the tensor perturbations
to the one in the code. CMBFAST calculates

CS
‘ ¼ ð4�ÞT2

0

Z
dk

k
D2
�ðkÞ g�T‘ðkÞ

� �2 ð28Þ

CT
‘ ¼ ð4�ÞT2

0

Z
dk

k
~DD2
hðkÞ ghT‘ðkÞ

� �2
; ð29Þ
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where � is the Newtonian potential, gT‘(k) is the radiation
transfer function, and T0 ¼ 2:725� 106 is the CMB temper-
ature in units of lK. The tilde denotes that ~DD2

hðkÞ is used in
CMBFAST but differs from our convention, D2

hðkÞ, where
~DD2
h ¼ D2

h=16. The comoving curvature perturbation, R, is
related to � by � ¼ �3

5R; thus, D2
RðkÞ ¼ ð25=9ÞD2

�ðkÞ.
Note that this relation holds from radiation domination to
matter domination with accuracy better than 0.5%.

CMBFAST uses A to parameterize D2
�ðk0Þ. The tensor

perturbations are calculated accordingly. The relations are

D2
�ðk0Þ ¼ 800�2

T2
0

A ; ð30Þ

~DD2
hðk0Þ ¼ 1

16
D2
hðk0Þ ¼

r

16
D2
Rðk0Þ ¼

25r

144
D2
�ðk0Þ : ð31Þ

Therefore, one obtains

DRðk0Þ ¼ 2:95� 10�9A : ð32Þ

The amplitude A is normalized at k1 ¼ 0:05 Mpc�1 and
the tensor-to-scalar ratio r is evaluated at k0 ¼ 0:002
Mpc�1, unless otherwise specified. To convert A(k0) to
A(k1), we use

Aðk1Þ ¼ Aðk0Þ
k1
k0

� 	nsðk0Þ�1þ 1=2ð Þðdns=d ln kÞ lnðk1=k0Þ
: ð33Þ

3.4.2. Step Size Optimization

The choice of the step size in the Markov chain is crucial
to improve the chain efficiency and speed up convergence. If
the step size is too big, the acceptance rate will be very small;
if the step size is too small, the acceptance rate will be high,
but the chain will exhibit poor mixing. Both situations will
lead to slow convergence. For our initial step sizes for each
parameter we use the standard deviation for each parameter
when all the other parameters are held fixed at the maximum
likelihood value. These are easy to find once a preliminary
chain has been run and the likelihood surface has been fit-
ted, as explained in x 3.4.3. If a given parameter is roughly
orthogonal to all the other parameters, it is not necessary to
adjust the step size further; in the presence of severe degen-
eracies the step size estimate needs to be increased by a
‘‘ banana correction ’’ factor, which is approximately the
ratio of the projection of the 1 � error along the degeneracy
to the projection perpendicular to the degeneracy.

With these optimizations the convergence criterion is
satisfied for the four chains after roughly 30,000 steps each
(2N ¼ 30; 000) for amodel with six parameters. On anOrigin
300 machine this takes roughly 32 hr running each chain on
eight processors. These numbers serve only as a rough indica-
tion: convergence speed depends on the model and on the
data set. For a fixed number of parameters, convergence can
be significantly slower if there are severe degeneracies among
the parameters. Adding more data sets might slow down the
evaluation of a single step in the chain but can also speed up
convergence by breaking degeneracies.

3.4.3. Likelihood Surface Fitting

The likelihood surface explored by theMCMCwas found
to be functionally well approximated by a quartic expan-
sion of the cosmological parameters (for example,

f�ig ¼ f!b; !c; n; �A;Z;Ag):

y � logL ¼ q0 þ
X
i

qi1�i þ
X
i�j

q
ij
2�i�j

þ
X
i�j�k

qijk3 �i�j�k þ
X

i�j�k�‘

qijk‘4 �i�j�k�‘ : ð34Þ

Here q are fit coefficients and �i are related to the cosmo-
logical parameters via �i ¼ ð�i � �0

i Þ=�i, where �0
i is the

maximum likelihood value of the parameter. Lower order
expansions were unable to reproduce the likelihood surface.
With six parameters there are Mf ¼ 210 fit coefficients.
Writing equation (34) as y ¼ q xx, the minimum least-
squares estimator for q is

q ¼ XTX
� ��1

XTy ; ð35Þ

where X is the N �Mf matrix Xij ¼ x
ðiÞ
j and N is the

number of unique points in the chain.
We run preliminary MCMC chains with ‘‘ guesstimated ’’

step sizes until there are �1000 unique points in total. Then
we use equation (34) to cut through the likelihood surface at
the maximum likelihood value to find the 1 � level in each
parameter direction (see x 3.4.2). This defines our ‘‘ step
size ’’ for subsequent chains.

3.5. The Choice of Priors

From Bayes’s theorem (eq. [19]) we can inferPð�ijxÞ, the
probability of the model parameters �i given the event x
(i.e., our observation of the power spectra), from the likeli-
hood function once the prior is specified. It is reasonable to
take prior probabilities to be equal when nothing is known
to the contrary (Bayes’s postulate). Unless otherwise stated,
we assume uniform priors on the parameters given in the
following list:

1. 0 � !c � 1.
2. 0 � !b � 1.
3. 0:005 � �A � 0:1.
4. 0 � 	 � 0:3.
5. 0:5 � A � 2:5.
6. 0 � nsjk0 � 2.
7. 0 � niso � 2.
8. 0 � fiso � 5000.
9. �0:5 � dn=d ln k � 0:5.
10. 0 � r � 2:5.
11. 0 � !� � 1.
12. �3:2 ð�1:2Þ � w � 0 (we will present two sets of

results, one with the prior w � �1:2 and the other with
w � �3:2).
13. 0 � !� � 1.

Note that we assume uniform priors on !c, !b, and hA rather
than uniform priors on�m,�b, andH0.

Except for the priors on 	 and w (the equation of state of
the dark energy component), the MCMCs never hit the
imposed boundaries; thus, most of our choices for priors
have no effect on the outcome. A detailed discussion about
the prior on 	 is presented in Spergel et al. (2003).

We set a lower bound on w at�3.2 (�1.2), but we discard
the region of parameter space where w < �3 (w < �1). This
is necessary because our best-fit value for this parameter is
close to the boundary. If we had instead set the prior to be
w � �3 (w � �1), then the chains would fail to be a fair
representation of the posterior distribution in the region of
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parameter space where the distance from the boundary is
comparable to the step size.

3.6. MCMCOutput Analysis

We merge the four converged MCMCs (e120,000
points) into one. From this we give the cosmological param-
eters that yield our best estimate of C‘ and the marginalized
distribution of the parameters. We compute the marginal-
ized distribution for one parameter and the joint distribu-
tion for two parameters, obtained marginalizing over all the
other parameters. Since the MCMC passes objective tests
for convergence and mixing, the density of points in param-
eter space is proportional to the posterior probability of the
parameters.

The marginalized distribution is obtained by projecting
the MCMC points. For the marginalized parameter values
��i�i, Spergel et al. (2003) quote the expectation value of the
marginalized likelihood,

R
L�i d�i ¼ 1=N

P
t �t;i. Here N

is the number of points in the merged chain and �t;i denotes
the value of parameter �i at the tth step of the chain. The last
equality becomes clear if we consider that the MCMC gives
to each point in parameter space a ‘‘ weight ’’ proportional
to the number of steps the chain has spent at that particular
location. The 100(1� 2p)% confidence interval ½cp; c1�p� for
a parameter is estimated by setting cp to the pth quantile of
�t;i; t ¼ 1; . . . ;N and cp�1 to the (1� p)th quantile. The pro-
cedure is similar for multidimensional constraints: the den-
sity of points in the n-dimensional space is proportional to
the likelihood, and multidimensional confidence levels can
be found as illustrated in x 15.6 of Press et al. (1992).

We note that the global maximum likelihood value for
the parameters does not necessarily coincide with the
expectation value of their marginalized distribution if the
likelihood surface is not a multivariate Gaussian. We find
that, for most of the parameters, the maximum likeli-
hood values of the global joint fit are consistent with the
expectation values of the marginalized distribution.

A virtue of the MCMC method is that the addition of
extra data sets in the joint analysis can efficiently be done
with minimal computational effort from the MCMC output
if the inclusion of extra data sets does not require the
introduction of extra parameters or does not drive the
param eters significantly away from the current best fit. For
example, we add Ly� power spectrum constraints to
MCMC’s outputs, but we cannot do this for the 2dFGRS,
since this requires the introduction of two extra parameters
(� and �p; see x 5.1 for more details).

If the likelihood surface for a subset of parameters from
an external (independent) data set is known, or if a prior
needs to be added a posteriori, the joint likelihood surface
can be obtained by multiplying the likelihood with the pos-
terior distribution of the MCMC output. In Spergel et al.
(2003) we follow this method to obtain the joint constraint
of CMB with Type Ia supernova (Riess et al. 1998, 2001)
data and CMB with Hubble Key Project Hubble constant
(Freedman et al. 2001) determination.

There is yet another advantage of the MCMC technique.
The current version of CMBFAST with the nominal inter-
polation settings is accurate to 1%, but random numerical
errors can sometimes exceed this. As the precision of the
CMB measurements improves, these effects can become
problematic for any approach that calculates derivatives as
a function of parameters. Because MCMC calculations

average over�100,000 CMB calculations, theMCMC tech-
nique is much less sensitive than either grid-based likelihood
calculations or methods that numerically calculate the
Fisher matrix.

4. EXTERNAL CMB DATA SETS

The Cosmic Background Imager (CBI; Mason et al. 2002;
Sievers et al. 2002; Pearson et al. 2002) and the Arcminute
Cosmology Bolometer Array Receiver (ACBAR; Kuo et al.
2002) experiments complement WMAP by probing the
amplitude of CMB temperature power spectrum at ‘ > 900.
These observations probe the Silk damping tail and improve
our analysis in two ways: (1) they improve our ability to con-
strain the baryon density, the amplitude of fluctuations, and
the slope of the matter power spectrum, and (2) they improve
convergence by preventing the chains from spending long
periods of time in large, moderately low likelihood regions of
parameter space.

The CBI data set is described in Mason et al. (2002), in
Pearson et al. (2002), and on their Web site.17 We use data
from the CBI mosaic data set (Pearson et al. 2002) and do
not include the deep data set as the two data sets are not
independent. We use the three band powers from the even
binning at central ‘-values of 876, 1126, and 1301, thus
ensuring that the chosen band power can be considered
independent from the WMAP data. At ‘e1500, the CBI
experiment detected excess power. If the rms amplitude of
mass fluctuations on scales of 8 h�1 Mpc is �8 � 1, then this
excess power can be interpreted as due to Sunayev-
Zeldovich distortion from undetected galaxy clusters
(Mason et al. 2002; Bond et al. 2002; Komatsu & Seljak
2002). We simplify our analyses by not using the CBI data
on scales where this effect can be important. The correla-
tions between different band powers are taken into account
with the full covariance matrix; we use the lognormal form
of the likelihood (as in Pearson et al 2002). In addition, we
marginalize over a 10% calibration uncertainty (CBI beam
uncertainties are negligible).

The ACBAR data set is described in Kuo et al. (2002).
We use the seven band powers at multipoles 842, 986, 1128,
1279, 1426, 1580, and 1716. As shown in Figure 4, these
points do not overlap with the WMAP power spectrum
except at ‘ � 800, where WMAP is noise dominated. As
shown in Figure 4, the ACBAR experiment is less sensitive
to Sunyaev-Zeldovich contamination than CBI. We com-
pute the likelihood analysis for cosmological parameters for
the ACBAR data set following Goldstein et al. (2002) and
using the error bars given on the ACBAR Web site.18 In
addition, we marginalize over conservative beam and cali-
bration uncertainties (B. Holzapfel 2002, private communi-
cation). In particular, we assume a calibration uncertainty
of 20% (the double of the nominal value) and 5% beam
uncertainty (60% larger than the nominal value).

The ACBAR and CBI data are completely independent
from each other (they map different regions of the sky) and
from the WMAP data (the band powers we consider span
different ‘ ranges). To perform the joint likelihood analysis,
we simply multiply the individual likelihoods.

17 See http://www.astro.caltech.edu/~tjp/CBI/data/index.html (last
update 2002 August).

18 See http://cosmology.berkeley.edu/group/swlh/acbar/data.
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5. ANALYSIS OF LARGE-SCALE STRUCTURE DATA

We can enhance the scientific value of the CMB data from
z � 1089 by combining it with measurements of the low-
redshift universe. Galaxy redshift surveys allow us to meas-
ure the galaxy power spectrum at z � 0, and observations of
Ly� absorption of about 50 quasar spectra (Ly� forest)
allow us to probe the dark matter power spectrum at
redshift z � 3.

We use the Anglo-Australian Telescope Two-Degree
Field Galaxy Redshift Survey (2dFGRS; Colless et al. 2001)
as compiled in 2001 February. This survey probes the uni-
verse at redshift zeff � 0:1 and probes the power spectrum
on scales corresponding to 0:022 < k < 0:2 (where k is in
units of hMpc�1). The anticipated Sloan Digital Sky Survey
(Gunn &Knapp 1993) power spectrum will be an important
complement to 2dFGRS. We also use the linear matter
power spectrum as recovered by Croft et al. (2002) from
Ly� forest observations. This power spectrum is recon-
structed at an effective redshift z � 2:72 and probes scales
k > 0:2 hMpc�1. Together these data sets allow us to probe
not only a wide range of physical scales—from
k � 1� 10�4 (30,000 Mpc h�1) to k � 1 (3 Mpc h�1) (see
Fig. 5)—but also the evolution of a given scale with redshift.

When including LSS data sets, one should keep in mind
that the underlying physics for these data sets is much more
complicated and less well understood than forWMAP data,
and systematic and instrumental effects are much more
important. We attempt here to include all the known (up-
to-date) uncertainties and systematics in our analysis. In
what follows, we illustrate our modeling of the ‘‘ real-
world ’’ effects of LSS surveys and how we propagate
systematic and statistical uncertainties into the parameter
estimation. The goal of our modeling is to relate not just the
shape but also the amplitude of the observed power spectrum
to that of the linear matter power spectrum as constrained
by CMB data. The reason for this will be clear in x 5.1.3; by
using the information in the power spectrum amplitude, we
can break some of the degeneracies among cosmological
parameters.

Fig. 5.—Combined CMB and LSS data set. Top: CMB angular power spectrum in lK2 as a function of k, where k is related to ‘ by ‘ ¼ �0k (where
�0 � 14; 400 Mpc is the distance to the last scattering surface). Black points are the WMAP data, red points CBI, blue points ACBAR. Bottom: LSS data.
Black points are the 2dFGRS measurements, and green points are the Ly� measurements. Both LSS power spectra are in units of (Mpc h�1)3 and have been
rescaled to z ¼ 0. This plot only illustrates the scale coverage of all the data sets we consider. The various LSS power spectra as plotted here cannot be directly
compared with the theory because of the effects outlined in x 5 (e.g., redshift-space distortions, nonlinearities, bias and window function effect).

Fig. 4.—CMB angular power spectrum (in lK2) for our best-fit �CDM
model for ‘ > 800 and the Sunayev-Zeldovich contribution for �8 ¼ 0:98
for CBI wavelengths (dotted line) and for ACBAR (dashed line). The
vertical line shows the adopted cutoff for CBI andACBAR.
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5.1. The 2dFGRS Power Spectrum

The 2dFGRS power spectrum, as released in 2002 June,
has been calculated from the 2001 February catalog that
includes 140,000 galaxies (Percival et al. 2001). The full sur-
vey is composed of 220,000 galaxies but is not yet available.
The sample is magnitude limited at bJ ¼ 19:45 and thus
probes the universe at zeff � 0:1 and the power spectrum on
scales corresponding to k > 0:015 hMpc�1. The input cata-
log is an extended version of the Automatic Plate Machine
(APM) galaxy catalog (Maddox et al. 1990b; Maddox,
Efstathiou,&Sutherland 1990a, 1996),which includes about
5 million galaxies to bJ ¼ 20:5. The APM catalog was used
previously to recover the three-dimensional power spectrum
of galaxies by inverting the clustering properties of the two-
dimensional galaxy distribution (Baugh & Efstathiou 1993;
Efstathiou & Moody 2001). These techniques, however, are
affected by sample variance and uncertainties in the photom-
etry; a full three-dimensional analysis is thusmore reliable.

The power spectrum of the galaxy distribution as mea-
sured by LSS surveys, such as the 2dFGRS, cannot be
directly compared to that of the initial density fluctuations,
as predicted by theory, or recovered from WMAP or the
combination of WMAP+CBI+ACBAR data sets. This is
due to a number of intervening effects that can be broadly
divided into two classes: effects due to the survey geometry
(i.e., window function, selection function effects) and effects
intrinsic to the galaxy distribution (e.g., redshift-space
distortions, bias, nonlinearities).

5.1.1. Survey Geometry

Galaxy surveys such as the 2dFGRS are magnitude
limited rather than volume limited; thus, most nearby gal-
axies are included in the catalog while only the brighter of
the more distant galaxies are selected. The selection function
accounts for the fact that fewer galaxies are included in the
survey as the distance (or the redshift) increases. An addi-
tional effect arises from the fact that the clustering proper-
ties of bright galaxies might be different from the average
clustering properties of the galaxy population as a whole.
The selection function does not take this into account (we
return to this point in x 5.1.2).

Moreover, the completeness across the sky is not con-
stant, and the survey can only cover a fraction of the whole
sky, sometimes with a very complicated geometry described
by the window function. In particular, for the data we use,
unobserved fields make the survey completeness a strongly
varying function of position. The measured Fourier coeffi-
cients are therefore the true coefficients of the galaxy distri-
bution convolved by the Fourier transform of the selection
function (in the direction of the line of sight) and of the
window function (on the plane of the sky). In this section we
follow the standard notation used in LSS analyses and refer
to all of these effects as window effects.

The window not only modifies the measured power spec-
trum but also introduces spurious correlations between
Fourier modes (see Percival et al. 2001 for more details).
For the 2dFGRS these effects have been quantified by
Monte Carlo simulations of mock catalogs of the survey.19

We include them in our analysis by convolving the theory
power spectrum with the window ‘‘ kernel ’’ and by includ-
ing off-diagonal terms in the covariance matrix.

5.1.2. Effects Intrinsic to the Galaxy Distribution

Linear gravitational evolution modifies the amplitude but
not the shape of the underlying power spectrum. However,
in the nonlinear regime (where the amplitude of fluctuations
is �
=
 � 1) this is no longer the case. Nonlinear gravita-
tional evolution changes the shape of the power spectrum
and introduces correlations between Fourier modes. This
effect becomes important on scales k � 0:1 hMpc�1, but the
exact scale at which it appears and its detailed characteristic
depend on cosmological parameters. Most of the clustering
signal from galaxy surveys such as 2dFGRS comes from the
regime where nonlinearities are nonnegligible because shot
noise is the dominant source of error at ke0:5 hMpc�1 and
the number density of modes scales as k3. These non-
linearities encode additional information about cosmology
and motivate their inclusion in the present analysis. This
approach is complicated by the fact that an accurate
description of the fully nonlinear evolution of the galaxy
power spectrum is complicated. In the literature, there are
several different approaches to modeling the nonlinear evo-
lution of the underlying dark matter power spectrum in real
space: (1) linear (and extended) perturbation theory, (2)
semianalytical modeling, and (3) numerical simulation. All
of these approaches yield consistent results on the scales
used in our analysis. We will use the semianalytical
approach developed by Hamilton et al. (1991) and Peacock
& Dodds (1996). In particular, we use the Ma et al. (1999)
formulation of the nonlinear power spectrum. Figure 6
shows the effect of nonlinearities on the matter power
spectrum on the scales of interest (compare solid and dashed
lines).

Theory predicts the statistical properties of the continu-
ous matter distribution, while observations are concerned
with the galaxy distribution, which is discrete. Moreover,
galaxies might not be faithful tracers of the mass distribu-
tion (i.e., the galaxy distribution might be biased ). In the
analysis of galaxy surveys it is assumed that galaxies form a
Poisson sampling of an underlying continuous field that is
related to the matter fluctuation field via the bias. It is possi-
ble to formally relate the discrete galaxy field and its contin-
uous counterpart. For the power spectrum, this consists of
the subtraction from the measured galaxy power spectrum
of the shot-noise contribution. The published power spectra
from galaxy surveys already have this contribution sub-
tracted but are still biased with respect to the underlying
mass power spectra.

The idea that galaxies are biased tracers of the mass distri-
bution even on large scales was introduced by Kaiser (1984)
to explain the properties of Abell clusters. Nevertheless, the
fact that galaxies of different morphologies have different
clustering properties (hence different power spectra) was
known much before (e.g., Hubble 1936; Dressler 1980;
Postman & Geller 1984). Since the clustering properties of
different types of galaxies are different, they cannot all be
good tracers of the underlying mass distribution.20

19 ForWMAP data, we deconvolve the raw measured ~CC‘ by the effect of
the window (the mask), thus leaving the effect of the window function and
the mask only in the Fisher matrix. For LSS we will convolve the theory
with the window, project the power spectrum into redshift space, and
compare this to the observed power spectrum.

20 Galaxies are likely to be formed in the very high density regions of the
matter fluctuation field; thus, they are formed very biased at z40 (e.g.,
Lyman break galaxies), but then gravitational evolution should make the
galaxy distribution less and less biased as time goes on (e.g., Fry 1996).
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In the simplest biasing model, the linear bias model, the
mass and galaxy fractional overdensity fields � and �g are
related by �gðxÞ ¼ b�ðxÞ. This implies that on all scales

PgðkÞ ¼ b2PðkÞ : ð36Þ

This simple model (although justified by the Kaiser 1984
assumption that galaxies form on the highest peaks of the
mass distribution) cannot be true in detail for two reasons.
The first is that, on a fundamental level, the galaxy fluctua-
tion field on small smoothing scales could become �g < �1,
which corresponds to a negative galaxy density. The second
is that, from an observational point of view, this scheme
leaves the shape of the power spectrum unchanged while
not all galaxy populations have the same observed power
spectrum shape, although the differences are not large (e.g.,
Peacock & Dodds 1994; Norberg et al. 2001). Many differ-
ent and more complicated biasing schemes have been intro-
duced in the literature. For our purposes it is important to
note that the bias of a sample of galaxies depends on the
sample selection criteria and on the weighting scheme used
in the analysis. Thus, different surveys will have different
biases, and care must be taken when comparing the different
galaxy power spectra.

There are several indications that large-scale galaxy bias
is scale independent on large scales (e.g., Hoekstra et al.
2002; Verde et al. 2002). This justifies adopting equation
(36). For the 2dFGRS, the bias of galaxies has been
measured by Verde et al. (2002), by using higher order
correlations of the galaxy fluctuation field. They assume a
generalization of the simple linear biasing scheme,
�g ¼ b1� þ b2=2�2. They find no evidence for scale-
dependent bias at least on linear and mildly nonlinear scales
(i.e., k < 0:4 hMpc�1) and b2 consistent with 0. This finding
further supports the use of equation (36). In particular, they
find b1 ¼ 1:06� 0:11. In our analysis we assume linear
biasing.

The Verde et al. (2002) bias measurement has to be inter-
preted with care. It applies to 2dFGRS galaxies weighted
with a modification of the Feldman, Kaiser, & Peacock
(1994) weighting scheme as described in Percival et al.

(2001). It is important to note that, close to the observer,
dim galaxies are included in the survey; the galaxy density is
high, but a small volume of the sky is covered. On the other
hand, far away from the observer, only very bright galaxies
are included in the survey; a large volume is probed, but the
galaxy density is low. As a consequence, clustering of dim
galaxies in a small volume close to the observer contains
most of the signal for the power spectrum at small scales.
While rare, bright galaxies in a large volume enclose most of
the information about the power spectrum on large scales.
An ‘‘ optimal ’’ weighting scheme would thus weight dim
galaxies on small scales and bright galaxies on large scales.
This weighting scheme is, unfortunately, biased. Bright gal-
axies are more strongly clustered (i.e., more biased) than
dim ones. This effect is known as ‘‘ luminosity bias.’’ The
power spectrum recovered from such a weighting scheme
will have optimal error bars but will exhibit scale-dependent
bias. The weighting scheme used in Percival et al. (2001) is
not optimal but is virtually unaffected by luminosity bias
(Percival 2003). The power spectrum so obtained is that of
two L* galaxies on virtually all scales, and the effective red-
shift for the power spectrum is zeff ¼ 0:17, slightly larger
than the effective redshift of the survey as defined by the
selection function (Percival et al. 2001; Peacock et al. 2001).

The final complication is that galaxy catalogs use the red-
shift as the third spatial coordinate. In a perfectly homoge-
neous Friedman universe, redshift would be an accurate
distance indicator. Inhomogeneities, however, perturb the
Hubble flow and introduce peculiar velocities. As Kaiser
(1987) emphasized, the peculiar velocities distort the cluster-
ing pattern not only on small scales, where virialized objects
produce ‘‘ Fingers of God,’’ but also on large scales, where
coherent flows produce large-scale distortion components.

On large (linear) scales the redshift-space effect on an
individual Fourier component of the density fluctuation
field �k can be modeled by

�k ! �sk ¼ �k 1þ �l2
� �

; ð37Þ

where the superscript s refers to the quantity in redshift
space and l is the cosine of the angle between the k-vector
and the line of sight. The Kaiser factor, �, is the linear red-
shift-space distortion parameter. One defines � ¼ f =b,
where f ¼ d ln �=d ln a, with � ¼ �
=
 and a ¼ ð1þ zÞ�1; b
is the linear bias parameter. The expression for f(z) is a
known function of�m,�, and z (Lahav et al. 1991),

f ð�m;�; zÞ ¼ X�1 �

ð1þ zÞ2
� �m

2
ð1þ zÞ

" #
� 1

þ ð1þ zÞ�1X�3=2

Z 1=ð1þzÞ

0

X�2=3 da

" #�1

;

ð38Þ

where X ¼ 1þ �mzþ �ða2 � 1Þ and can be approximated
by21 � ’ �0:6

m =b. The analysis of the 2dFGRS (Peacock
et al. 2001; Percival et al. 2001) constrains f at the effective
redshift of the survey. The effective redshift of the survey
depends on the galaxy weighting scheme adopted to com-
pute the power spectrum for the above work (zeff � 0:17).
This peculiar velocity infall causes the overdensity to appear

Fig. 6.—Matter power spectrum in (Mpc h�1)3, linear in real space (solid
line), nonlinear in real space (dashed line), and nonlinear in redshift space
(dotted line). The error bars on the dotted line show the size of the statistical
error bars per k bin of the 2dFGRS galaxy power spectrum. The power
spectrum is in units of (Mpc h)3.

21 In our analysis we use the exact expression for � as in eq. (38).
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squashed along the line of sight. The net effect on the angle-
averaged power spectrum in the small-angle approximation
is

PsðkÞ ¼ PðkÞ 1þ 2
3� þ 1

5�
2

� �
: ð39Þ

Thus, on large scales the redshift-space distortions boost the
power spectrum if � > 0.

On smaller scales, virialized motions produce a radial
smearing and the associated ‘‘ Fingers of God ’’ effect
contaminates the wavelengths we are interested in. This is
difficult to treat exactly, but as it is a smearing effect, it pro-
duces a mild damping of the power, acting in the opposite
direction to the large-scale boosting by the Kaiser effect
(see, e.g., Matsubara 1994). On these scales, the redshift-
space correlation function is well modeled as a convolution
of the real-space isotropic correlation function with some
distribution function for the line-of-sight velocities (e.g.,
Davis & Peebles 1983; Cole, Fisher, & Weinberg 1994;
Fisher 1995). Since the convolution in real space is equiva-
lent to multiplication in Fourier space, the redshift-space
power spectrum on small scales is multiplied by the square
of the Fourier transform of the velocity distribution
function (e.g., Peacock &Dodds 1994),

Psðk; lÞ ¼ PðkÞ 1þ �l2
� �2

Dðk�plÞ ; ð40Þ

where �p denotes the line-of-sight pairwise velocity disper-
sion. If the pairwise velocity distribution is taken to be
an exponential (e.g., Ballinger, Heavens, & Taylor 1995;
Ballinger, Peacock, & Heavens 1996; Hatton & Cole 1998),
which seems to be supported by simulations (e.g., Zurek
et al. 1994) and observations (e.g., Marzke et al. 1995), then
the damping factor is a Lorentzian (see also Kang et al.
2002),

Dðk�plÞ ¼
1

1þ ðk2�2
pl

2Þ=2 : ð41Þ

We adopt this functional form as it is used by Peacock et al.
(2001) in determining the redshift-space distortion param-
eters � and �p from the 2dFGRS. The overall effect for the
power spectrum in a thin shell in k-space is given by

PsðkÞ ¼
"
4
ð�2

pk
2 � �Þ�
�4
pk

4
þ 2�2

3�2
pk

2

þ
ffiffiffi
2

p
ðk2�2

p � 2�Þ2 arctan k�p=
ffiffiffi
2

p� �
k5�5

p

#
PðkÞ ð42Þ

obtained by averaging over l in equation (40) with the
damping factor given by equation (41). Figure 6 shows the
effect of redshift-space distortions (eq. [42]) on the scales of
interest.

This model is simplistic for several reasons. The most
important is that, because of the complicated geometry of
the survey, the simple angle average operation performed to
obtain equation (42) might not be strictly correct. In addi-
tion, equation (42) is obtained in the plane-parallel (also
known as small-angle) approximation (i.e., as if the lines of
sight to different galaxies on the sky were parallel).

We have performed extensive testing of equation (42)
using mock 2dFGRS catalogs obtained from the Hubble
volume simulation. We find that the simulations’ redshift-
space power spectrum is consistent, given the errors, with

equation (42), where P(k) is the simulations’ real-space
power spectrum up to k < 0:4 hMpc�1, even for the compli-
cated geometry of the 2dFGRS. This means that up to
k � 0:4 the systematics introduced by equation (42) is
smaller than the statistical errors; in the analysis we use only
kd0:15. However, the value for � in equation (42) needs to
be calibrated onMonte Carlo realizations of the survey. We
find that �eff ¼ 0:85�. We have verified that our results for
the cosmological parameters are insensitive to the exact
choice of the correction factor. Peacock et al. (2001) mea-
sured the parameters � and �p and their joint probability
distribution from the survey, obtaining � ¼ 0:43 and
�p ¼ 385 km s�1. This measurement has been obtained by
using the full angular dependence of the power spectrum
and therefore recovers directly � and not �eff. Hawkins et al.
(2002) measured these parameters from a larger sample than
the one from Peacock et al. (2001), obtaining a slightly dif-
ferent result. This is mostly due to a shift in the recovered
value for �p. Since most of the galaxies in the Hawkins et al.
(2002) sample are in the Peacock et al. (2001) sample, we
conservatively extend our error bars on � and � by 10% and
30%, respectively, to include the new value within the 1 �
marginalized confidence contour and to include a possible
error in the determination of �eff. Figure 6 illustrates the
importance of including all the above effects in our analysis.

In our analysis we consider data in the k range
0:02 h Mpc�1 < k < 0:2 h Mpc�1. On large scales the limit
is set by the accuracy of the window function model; on
small scales the limit is set by where the covariance matrix
has been extensively tested. In this regime we also have a
weak dependence on the velocity dispersion parameter �p,
the parameter with the largest systematic uncertainty.

5.1.3. Motivation for this Modeling

The motivation behind the complicated modeling of
xx 5.1.1 and 5.1.2 is to be able to infer the amplitude of the
matter power spectrum from the observed galaxy clustering
properties.

Figures 7 and 8 illustrate how the modeling of xx 5.1.1
and 5.1.2 helps in breaking degeneracies among cosmologi-
cal parameters. For illustration, we consider two cases
below: the degeneracy of the dark energy equation of state,
w (Huey et al. 1999), with �b and ns and the !� � h degener-
acy, where !� ¼ ��h2.

Figure 7 shows two models that are virtually indistin-
guishable with CMB data, but which predict different
amplitudes for the matter power spectra at z � 0. This is
because the linear growth factor and the shape parameter C
are different for the two cases. The two models differ in the
values of !b, ns, and w. The solid line is a model with
w ¼ �0:4, while the dotted line is a model with w ¼ �1.

In Figure 8 we show two sets of cosmological parameters
that differ only in the values of the neutrino mass and the
Hubble constant. These two models are virtually indistin-
guishable with CMB observations. However, the matter
power spectrum in the two cases is different in shape and
amplitude. Since redshift-space distortions and window
function affect the power spectrum shape, extra information
about cosmological parameters is encoded in its amplitude.
By using this information, Spergel et al. (2003) obtain a cos-
mological upper bound on the neutrino mass that is �4
times better than current cosmological constraints (Elgarøy
et al. 2002).
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For completeness, we have shown the power spectrum
also for scales probed by the Ly� forest (see x 6). The error
bars in Figures 7 and 8 are examples of the size of the
2dFGRS and Ly� power spectra statistical uncertainties in
one data point, showing that the two models can be distin-
guished if the observed power spectrum can be related to the
linear matter power spectrum without introducing large
additional uncertainties.

5.1.4. Practical Approach

The procedure we adopt in order to compare the observed
galaxy power spectrum with the theory predictions is

outlined below (the published 2dFGRS galaxy power spec-
trum has been already corrected for shot noise). For a given
set of cosmological parameters and a pairwise velocity
dispersion parameter we proceed as follows:

1. The MCMC selects a set of cosmological parameters
and values for � and �p. CMBFAST computes the
theoretical linear matter power spectrum at z ¼ 0.
2. We evolve the theoretical linear matter power spec-

trum to obtain the nonlinear matter power spectrum at the
effective redshift of the survey, following the prescription of
Ma et al. (1999).

Fig. 7.—Two cosmological models: !b ¼ 0:0235, !m ¼ 0:143, ns ¼ 0:978, 	 ¼ 0:11, w ¼ �0:426, h ¼ 0:53 (solid line) and !b ¼ 0:0254, !m ¼ 0:137,
ns ¼ 1:024, 	 ¼ 0:08, w ¼ �1, h ¼ 0:77 (dotted line). The two models are indistinguishable within current error bars from the CMB angular power spectrum
(left-hand panel; units for the power spectrum are lK2). However, they can easily be distinguished if we can relate the observed power spectrum to the
underlying matter power spectrum [right-hand panel; units for the power spectrum are (Mpc h�1)3]. The error bars on the solid line are examples of the size of
the 2dFGRS and Ly� power spectra statistical error bars for one data point at different scales. There are four error bars for 2dFGRS and four for Ly� .

Fig. 8.—Two cosmological models: �m ¼ 0:26, !b ¼ 0:02319, 	 ¼ 0:12, ns ¼ 0:953, !� ¼ 0, h ¼ 0:714 (solid line) and �m ¼ 0:26, !b ¼ 0:02319, 	 ¼ 0:12,
ns ¼ 0:953, !� ¼ 0:02, h ¼ 0:6 (dashed line). As before the two models are virtually indistinguishable from the CMB angular power spectrum (left-hand panel;
units for the power spectrum are lK2), but they can easily be distinguished if the matter power spectrum amplitude is known [right-hand panel; units for the
power spectrum are (Mpc h�1)3]. The error bars on the solid line are examples of the size of the 2dFGRS and Ly� power spectra statistical error bars for one
data point. There are four error bars for 2dFGRS and four for Ly� .
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3. We then obtain the redshift-space power spectrum for
the mass by using equation (42) with �eff calibrated from
Monte Carlo realizations of the catalog.
4. The bias is computed from � and �m using equation

(38). The galaxy power spectrum is obtained by correcting
for bias, equation (36).
5. The resulting power spectrum is convolved with the

galaxy window function. We use the routine provided on
the 2dFGRS Web site to perform this numerically. This is
the power spectrum that can be compared with the quantity
measured from a galaxy survey.
6. We can now evaluate the likelihood using the full

covariance matrix as provided by the 2dFGRS team. We
approximate the likelihood to be Gaussian as it was done by
the team. In principle, this is not strictly correct since in the
linear regime the power spectrum is an exponential distribu-
tion and in the nonlinear regime the distribution has contri-
butions from higher orders correlations. However, because
of the size of the survey we are considering, the central limit
theorem ensures that the likelihood is well described by the
Gaussian approximation (e.g., Scoccimarro, Zaldarriaga,
& Hui 1999). Moreover, the covariance matrix for
the 2dFGRS power spectrum has been computed by the
2dFGRS team under the assumption that the likelihood is
Gaussian.

We assume that the likelihood for the bias parameter is
Gaussian, centered on b ¼ 1:04 with dispersion �b ¼ 0:11.
This is a conservative overestimate of the error on the bias
parameter, as noted in Verde et al. (2002). The determina-
tion of b is correlated with � and �p, and the error quoted
has already been marginalized over the uncertainties in
these two parameters. In practice, for each step in the
Markov chain we compute the likelihood according to items
1–6 above. The bias parameter is determined once �, �p, and
the other cosmological parameters are chosen. We then
multiply the likelihood by the joint likelihood for � and �p,
as in Figure 4 of Peacock et al. (2001), and by the likelihood
for the bias parameter. In effect, we use the determination of
�, �p, and b as priors. By multiplying the likelihood, we
assume that the measurements of the redshift-space distor-
tion parameters, bias, and the 2dFGRS power spectrum are
independent.We justify this assumption below.

The parameters needed to map the real-space nonlinear
matter power spectrum onto the redshift-space galaxy spec-
trum are �, �p, and b. These three parameters are not inde-
pendent: not only is � / 1=b, but, more importantly, the
three parameters are measured from the same catalog that
we are using to constrain other cosmological parameters.
However, the information we use to constrain cosmological
parameters is all encoded in the shape and amplitude of the
angle-averaged power spectrum. The information used to
measure � and �p is all encoded in the dependence of the
Fourier coefficients (i.e., of the power spectrum) on the
angle from the line of sight. Thus, we can treat the determi-
nations of � and �p as independent from the likelihood for
cosmological parameters. The analysis of Verde et al. (2002)
to measure the bias parameter from the 2dFGRS uses both
information about the amplitude of the Fourier coefficients
and their angular dependence. This dependence, however, is
not that introduced by redshift-space distortions but is the
configuration dependence of the bispectrum. Thus, in prin-
ciple, we should not treat this measurement as completely
independent. However, most of the signal for the bias mea-

surement comes from the k range of 0:2 h Mpc�1 < k < 0:4
h Mpc�1, while the signal for the present analysis comes
from k < 0:2 h Mpc�1. Note that the configuration
dependence of the bispectrum is largely independent of cos-
mology. This allows us to easily include a prior for the bias
parameter in the analysis.

6. Ly� FOREST DATA

The Ly� forest traces the fluctuations in the neutral gas
density along the line of sight to distant quasars. Since most
of this absorption is produced by low-density unshocked
gas in the voids or in mildly overdense regions that are
thought to be in ionization equilibrium, this gas is assumed
to be an accurate tracer of the large-scale distribution of
dark matter. In this epoch and on these scales the clustering
of dark matter is still in the linear regime.

Since the Ly� forest observations are probing the distri-
bution of matter at z � 3, they are an important comple-
ment to the CMB data and the galaxy survey data. Because
of their importance, there has been extensive numerical and
observational work testing the notion that they trace the
LSS. In our analyses, we find that the addition of Ly� forest
data appears to confirm trends seen in other data sets and
tightens cosmological constraints. However, more observa-
tional and theoretical work is still needed to confirm the
validity of the emerging consensus that the Ly� forest data
trace the LSS.

Recent papers use two different approaches for analysis
of the Ly� forest power spectrum data. McDonald et al.
(2000) and Zaldarriaga, Hui, & Tegmark (2001) directly
compare the observed transmission spectra to the predic-
tions from cosmological models. We follow the approach of
Croft et al. (2002) and Gnedin & Hamilton (2002, hereafter
GH), who use an analytical fitting function to recover the
matter power spectrum from the transmission spectrum.22

GH factorize the linear power spectrum into four terms,

PLðkÞ ¼ PfactðkÞQ�QTQ	 ; ð43Þ

where Pfact(k) is a quantity that is independent of modeling
and is almost directly measured. The other parameters con-
vert this quantity into the linear matter power spectrum and
encode the dependence on cosmology and the modeling of
the intergalactic medium (IGM). In our treatment, we
use the values of Pobs(k) (the estimator from Ly� forest
observations of Pfact) from GH and their parameterization
in terms of equation (43) because it allows us to explicitly
include the dependence of the recovered linear matter power
spectrum on the cosmological parameters. Q� encodes the
dependence of the recovered linear power spectrum on
the matter density parameter at z ¼ 2:72. ForQ� we use the
GHAnsatz of

Q� ¼ 2:4

1þ �0:6
m 1:4

� 	2

: ð44Þ

22 After the present paper was submitted, a preprint appeared (Seljak
et al. 2003) claiming that the treatment of GH and Croft et al. (2002) signifi-
cantly underestimates the errors. Given the importance of this data set to
tighten cosmological constraints, the Ly� forest community should reach a
consensus on the interpretation of these observations and on the level of
systematic contamination.
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QT ¼ 20; 000 K=T0 (T0 � 20; 000 K) parameterizes the
dependence on the mean temperature of the IGM, and
Q	 � 1:11 parameterizes the dependence on the assumed
mean optical depth. In addition to the statistical errors, GH
quote a systematic uncertainty that we add to the statistical
one. Finally, the uncertainties in Q�, QT, and Q	 contribute
to the overall normalization uncertainty. We use the Croft
et al. (2002) prescription to parameterize this uncertainty
as lnPðAÞ ¼ �1=2ðA� 1Þ2=�2

Ly�, where if A � 1, then
�Ly� ¼ 0:25, while ifA > 1, �Ly� ¼ 0:29.

N-body simulations are used to convert the flux power
spectrum to the dark matter power spectrum and calibrate
the form of equation (43). The two different groups, GH
and Croft et al. (2002), have done this independently. The
resulting power spectra agree well within the 1 � errors for
all data points except the last three. We thus increase the 1 �
uncertainties on the last three data points to make the two
determinations of PL(k) consistent and use this as a rough
measure of the intrinsic systematic uncertainties in the Ly�
data.

GH point out that the correlation in flux measured from
the Ly� forest samples power over a finite band of wave-
numbers. The effective band-power windows are rather
broad as a result of the peculiar velocities that smear power
on scales comparable to the one-dimensional velocity dis-
persion. Thus, the recovered linear power spectrum is effec-
tively smoothed with a window that becomes broader at
smaller scales. In principle, the resulting covariance between
estimates of power at different k needs to be taken into
account to do a full likelihood analysis to extract cosmologi-
cal parameters. However, the full covariance matrix is not
available. Since the Ly� data are such a powerful tool, we
just perform a simple �2 fit and caution the reader that inter-
preting the reduced �2 as a measure of goodness of fit for
this data set is not meaningful since the data are strongly
correlated.

To marginalize over the overall normalization uncer-
tainty, we take advantage of the MCMC approach. In
principle, we could marginalize over it analytically, as we do
for the calibration uncertainty. Instead, at each step of the
chain we compute the best-fit amplitude �AA as done for point
sources (Hinshaw et al. 2003b),

�AA ¼
X
k

PobsðkÞPLðkÞ
�2
k

" # X
k

PobsðkÞ2

�2
k

" #�1

: ð45Þ

The likelihood for the Ly� data for the model is given by
lnLLy� ¼ lnLðPobsj�AA;PLÞ þ lnPð�AAÞ. The marginaliza-
tion is then automatically obtained from the MCMC out-
put. In other words, the analytic marginalization computesR
PðdatajmodelÞPðAÞdA, while we compute an estimator

of this given by
R
PðdatajmodelÞPð�AAÞd �AA.

7. CONCLUSIONS

In this paper we have presented the basic formalism that
we use for our likelihood analysis. This paper shows the
final step on the path from time-ordered data to cosmologi-

cal parameters. It provides the framework for the analysis
of cosmological parameters and their implications for
cosmology.

The unprecedented quality of the WMAP data and the
tight constraints on cosmological parameters that are
derived require a rigorous analysis so that the approxi-
mations made in the modeling do not propagate into sig-
nificant biases and systematic errors. We have derived an
approximation to the exact likelihood function for the C‘

that is accurate to better than 0.1%, and we have care-
fully calibrated the temperature power spectrum
covariance matrix with Monte Carlo simulations. This
enables us to use the effective �2 per degree of freedom
as a tool to test whether or not a model is an acceptable
fit to the data.

We implement our likelihood analysis with the MCMC.
We have concentrated on the issue of convergence and
mixing, emphasizing how important these issues are in
recovering cosmological parameter values and their
confidence levels from theMCMC output.

To the WMAP data sets (TT and TE angular power
spectra) we have added the CBI and ACBAR measure-
ment of the CMB on smaller angular scales, the 2dFGRS
galaxy power spectrum at z � 0, and the Ly� forest
matter power spectrum at z � 3. These external data sets
significantly enhance the scientific value of the WMAP
measurement, by allowing us to break parameter degen-
eracies. While the underlying physics for these data sets
is much more complicated and less well understood than
for WMAP data, and systematic and instrumental effects
are much more important, we feel we have made a signif-
icant step toward improving the rigor of the analysis of
these data sets. We have included a detailed modeling of
galaxy bias, redshift distortions, and the nonlinear
growth of structure. We also include known (as to the
present day) systematic and statistical uncertainties
intrinsic to these other data sets.
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