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SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP∗) OBSERVATIONS:
ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES?
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ABSTRACT

A simple six-parameter ΛCDM model provides a successful fit to WMAP data. This holds both when the WMAP
data are analyzed alone or in combination with other cosmological data. Even so, it is appropriate to examine the
data carefully to search for hints of deviations from the now standard model of cosmology, which includes inflation,
dark energy, dark matter, baryons, and neutrinos. The cosmological community has subjected the WMAP data to
extensive and varied analyses. While there is widespread agreement as to the overall success of the six-parameter
ΛCDM model, various “anomalies” have been reported relative to that model. In this paper we examine potential
anomalies and present analyses and assessments of their significance. In most cases we find that claimed anomalies
depend on posterior selection of some aspect or subset of the data. Compared with sky simulations based on the
best-fit model, one can select for low probability features of the WMAP data. Low probability features are expected,
but it is not usually straightforward to determine whether any particular low probability feature is the result of the
a posteriori selection or non-standard cosmology. Hypothesis testing could, of course, always reveal an alternative
model that is statistically favored, but there is currently no model that is more compelling. We find that two cold
spots in the map are statistically consistent with random cosmic microwave background (CMB) fluctuations. We
also find that the amplitude of the quadrupole is well within the expected 95% confidence range and therefore is
not anomalously low. We find no significant anomaly with a lack of large angular scale CMB power for the best-fit
ΛCDM model. We examine in detail the properties of the power spectrum data with respect to the ΛCDM model and
find no significant anomalies. The quadrupole and octupole components of the CMB sky are remarkably aligned,
but we find that this is not due to any single map feature; it results from the statistical combination of the full-sky
anisotropy fluctuations. It may be due, in part, to chance alignments between the primary and secondary anisotropy,
but this only shifts the coincidence from within the last scattering surface to between it and the local matter density
distribution. While this alignment appears to be remarkable, there was no model that predicted it, nor has there been
a model that provides a compelling retrodiction. We examine claims of a hemispherical or dipole power asymmetry
across the sky and find that the evidence for these claims is not statistically significant. We confirm the claim of a
strong quadrupolar power asymmetry effect, but there is considerable evidence that the effect is not cosmological.
The likely explanation is an insufficient handling of beam asymmetries. We conclude that there is no compelling
evidence for deviations from the ΛCDM model, which is generally an acceptable statistical fit to WMAP and other
cosmological data.

Key words: cosmic background radiation – cosmological parameters – cosmology: observations – dark matter –
early universe – instrumentation: detectors – large-scale structure of universe – space vehicles – space vehicles:
instruments – telescopes

1. INTRODUCTION

The WMAP mission (Bennett et al. 2003a) was designed
to make precision measurements of the cosmic microwave
background (CMB) to place constraints on cosmology. WMAP

∗ WMAP is the result of a partnership between Princeton University and
NASA’s Goddard Space Flight Center. Scientific guidance is provided by the
WMAP Science Team.

was specifically designed to minimize systematic measurement
errors so that the resulting measurements would be highly
reliable within well-determined and well-specified uncertainty
levels. The rapidly switched and highly symmetric differential
radiometer system effectively makes use of the sky as a stable
reference load and renders most potential systematic sources of
error negligible. The spacecraft spin and precession paths on
the sky create a highly interconnected set of differential data.
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Multiple radiometers and multiple frequency bands enable
checks for systematic effects associated with particular radiome-
ters and frequency dependencies. Multiple years of observations
allow for checks of time-dependent systematic errors.

The WMAP team has provided the raw time ordered data to the
community. It has also made full-sky maps from these data, and
these maps are the fundamental data product of the mission. If
(and only if) the full-sky CMB anisotropy represented in a map
is a realization of an isotropic Gaussian random process, then
the power spectrum of that map contains all of the cosmological
information. The maps and cosmological parameter likelihood
function based on the power spectrum are the products most
used by the scientific community.

The WMAP team used realistic simulated time ordered data
to test and verify the map-making process. The WMAP and
Cosmic Background Explorer (COBE) maps, produced by
independent hardware and with substantially different orbits
and sky scanning patterns, have been found to be statistically
consistent. Freeman et al. (2006) directly verified the fidelity
of the WMAP team’s map-making process (Hinshaw et al.
2003; Jarosik et al. 2007; Jarosik et al. 2011). It was indirectly
verified by Wehus et al. (2009) as well. Finally, numerous CMB
experiments have verified the WMAP sky maps over small
patches of the sky (mainly with cross-correlation analyses),
either to extract signal or to transfer the more precise WMAP
calibration.

WMAP data used alone are consistent with a six-parameter
inflationary ΛCDM model that specifies the baryon density
Ωbh

2, the cold dark matter density Ωch
2, a cosmological

constant ΩΛ, a spectral index of scalar fluctuations ns, the optical
depth to reionization τ , and the scalar fluctuation amplitude Δ2

R
(Dunkley et al. 2009; Larson et al. 2011). This ΛCDM model
is flat, with a nearly (but not exactly) scale-invariant fluctuation
spectrum seeded by inflation, with Gaussian random phases,
and with statistical isotropy over the super-horizon sky. When
WMAP data are combined with additional cosmological data,
the ΛCDM model remains a good fit, with a narrower range of
allowed parameter values (Komatsu et al. 2011). It is remarkable
that such diverse observations over a wide range of redshifts are
consistent with the standard ΛCDM model.

There are three major areas of future investigation: (1) further
constrain allowed parameter ranges, (2) test the standard ΛCDM
model against data to seek reliable evidence for flaws, and (3)
seek the precise physical nature of the components of the ΛCDM
model: cold dark matter, inflation, and dark energy. It is the
second item that we address here: are there potential deviations
from ΛCDM within the context of the allowed parameter ranges
of the existing WMAP observations?

A full-sky map T (n) may be decomposed into spherical
harmonics Ylm as

T (n) =
∞∑
l=0

l∑
m=−l

almYlm(n) (1)

with

alm =
∫

dn T (n)Y ∗
lm(n), (2)

where n is a unit direction vector. If the CMB anisotropy
is Gaussian-distributed with random phases, then each alm is
independent, with a zero-mean 〈alm〉 = 0 Gaussian distribution
with

〈alma∗
l′m′ 〉 = δll′δmm′Cl, (3)

where Cl is the angular power spectrum and δ is the Kronecker
delta. Cl is the mean variance per multipole moment l that would
be obtained if one could take and average measurements from
every vantage point throughout the universe. We have only our
one sample of the universe, however, and its spectrum is related
to the measured alm coefficients by

C
sky
l = 1

2l + 1

l∑
m=−l

|alm|2, (4)

where 〈Csky
l 〉 = Cl if we were able to average over an ensemble

of vantage points. There is an intrinsic cosmic variance of

σl

Cl

=
√

2

2l + 1
. (5)

In practice, instrument noise and sky masking complicate
these relations. In considering potential deviations from the
ΛCDM model in this paper, we examine the goodness of fit
of the Cl model to the data, the Gaussianity of the alm derived
from the map, and correlations between the alm values.

We recognize that some versions of ΛCDM (such as with
multi-field inflation, for example) predict a weak deviation
from Gaussianity. To date, the WMAP team has found no such
deviations from Gaussianity. This topic is further examined by
Komatsu et al. (2009) and Komatsu et al. (2011). Statistical
isotropy is a key prediction of the simplest inflation theories so
any evidence of a violation of rotational invariance would be
a significant challenge to the ΛCDM or any model based on
standard inflation models.

Anomaly claims should be tested for contamination by
systematic errors and foreground emission and should be robust
to statistical methodology. Statistical analyses of WMAP CMB
data can be complicated, and simulations of skies with known
properties are usually a necessary part of the analysis. Statistical
analyses must account for a posteriori bias, which is easier
said than done. With the large amount of WMAP data and
an enormous number of possible ways to combine the data,
some number of low probability outcomes are expected. For this
reason, what constitutes a “significant” deviation from ΛCDM
can be difficult to specify. While methods to reduce foreground
contamination (such as sky cuts, internal linear combinations,
and template-based subtractions) can be powerful, none is
perfect. Since claimed anomalies often tend to be at marginal
levels of significance (e.g., 2σ–3σ ), the residual foreground
level may be a significant consideration.

The WMAP Science Team has searched for a number of dif-
ferent potential systematic effects and placed quantitative upper
limits on them. The WMAP team has extensively examined
systematic measurement errors with each of its data releases:
Jarosik et al. (2003) and Hinshaw et al. (2003) for the first-year
data release, Hinshaw et al. (2007) and Page et al. (2007) for the
three-year data release, Hinshaw et al. (2009) for the five-year
data release, and Jarosik et al. (2011) for the current seven-year
data release. Since those papers already convey the extensive
systematic error analysis efforts of the WMAP team, this paper
focuses on the consistency of the data with the ΛCDM model
and relies on the systematic error limits placed in those papers.
Some data analysis techniques compute complicated combina-
tions of the data where the systematic error limits must be fully
propagated.

This is one of a suite of papers presenting the seven-year
WMAP data. Jarosik et al. (2011) provide a discussion of the sky
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maps, systematic errors, and basic results. Larson et al. (2011)
derive the power spectra and cosmological parameters from the
WMAP data. Gold et al. (2011) evaluate the foreground emission
and place limits on the foreground contamination remaining
in the separated CMB data. Komatsu et al. (2011) present a
cosmological interpretation of the WMAP data combined with
other cosmological data. Weiland et al. (2011) analyze the
WMAP observations of the outer planets and selected bright
sources, which are useful both for an understanding of the
planets and for enabling these objects to serve as more effective
calibration sources for CMB and other millimeter-wave and
microwave experiments.

This paper is organized as follows. In Section 2 we comment
on the prominent large cold spot, nearby but offset from the
Galactic center region, that attracted attention when the first
WMAP sky map was released in 2003. In Section 3 we comment
on a cold spot in the southern sky that has attracted attention
more recently. In Section 4 we assess the level of significance
of the low value measured for the amplitude of the CMB
quadrupole (l = 2) component. In Section 5 we discuss the
lack of large-scale power across the sky. In Section 6 we assess
the goodness of fit of the WMAP data to the ΛCDM model.
In Section 7 we examine the alignment of the quadrupole and
octupole. In Section 8 we assess claims of a hemispherical or
dipole power asymmetry, and in Section 9 we assess claims of a
quadrupolar power asymmetry. We summarize our conclusions
in Section 10.

2. COLD SPOT I, GALACTIC FOREGROUND EMISSION,
AND THE FOUR FINGERS

When WMAP data were first released in 2003, an image of
the full sky was presented in Galactic coordinates, centered on
the Galactic center (Bennett et al. 2003b). Galactic emission
was minimized for this image by using an Internal Linear
Combination (ILC) of WMAP data from independent frequency
bands in such a way as to minimize signals with the frequency
spectra of the Galactic foregrounds. The seven-year raw V-band
map and ILC map are shown in Figure 1. A prominent cold
(blue) spot is seen near the center of these maps, roughly half
of which lies within the KQ85y7 Galaxy mask. For the portion
within the mask, the ILC process removes >99% of the V-band
pixel–pixel variance, while making almost no difference to the
variance in the portion outside the mask. In the ILC map, the
variances in the two regions are nearly equal. Given its CMB-
like spectrum and the fact that it is not centered on the Galactic
center, this cold spot is very unlikely to be due to galactic
foreground emission. Several years of modeling the separation
of foreground emission from the CMB emission continues to
support the conclusion that this cold spot is not dominated by
Galactic foreground emission, but rather is a fluctuation of the
CMB. Further, the probability that a randomly located feature
of this size would be near the Galactic center is ∼5% and the
probability of such a feature overlapping the Galactic plane, at
any longitude, is much higher. This large central cold spot is a
statistically reasonable CMB fluctuation within the context of
the ΛCDM model.

Since people are highly effective at detecting patterns; it is
not surprising that a visual inspection of the WMAP sky map
reveals interesting features. Four elongated cold (blue) fingers
stretching from about the Galactic equator to the south Galactic
pole are seen in Figure 2. There do not appear to be any
similar fingers or features in the northern Galactic hemisphere
aside from the northern-most extensions of the mostly southern

Figure 1. Top: large colder-than-average region, highlighted by the white curve,
appears prominently on the raw V-band temperature map. The full-sky map is
shown with the Galactic plane horizontal across the center of the map with
the Galactic center at the center of the displayed projection. Bottom: with the
foreground signals strongly suppressed by the ILC technique, the highlighted
cold spot is seen to be at least as prominent. It is offset from the Galactic
center in both latitude and longitude. This fact, combined with the fact that
the clearly effective ILC foreground reduction does not diminish this feature,
establishes that this is a CMB fluctuation and not a foreground effect. This
feature is not anomalous in that simulated realizations of ΛCDM model skies
routinely produce features like this.

fingers. Cold Spot I can be seen to be the northern part of one
of the colder fingers.

There may be a tendency to overestimate the significance of
features like Cold Spot I or the four fingers. It is very hard
to define quantitative statistics for such features due to the
visual nature of their identification. There is also an unavoidable
posterior bias when using narrowly defined statistics targeted at
particular features seen in our sky. In any case, visual inspection
of simulated ΛCDM maps often reveals large-scale features such
as these, without requiring any underlying statistical fluctuation.
Indeed, it is the lack of these features in the northern sky that
may be the more unusual situation.

3. COLD SPOT II

A detection of non-Gaussianity and/or phase correlations in
the WMAP alm data would be of great interest. While a detection
of non-Gaussianity could be indicative of an experimental
systematic effect or of residual foregrounds, it could also point
to new cosmological physics. There is no single preferred test
for non-Gaussianity. Rather, different tests probe different types
of non-Gaussianity; therefore, it is important to subject the data
to a variety of tests.

Vielva et al. (2004) used a spherical Mexican hat wavelet
(SMHW) analysis on the first-year WMAP data to claim a
detection of a non-Gaussian signal on a scale of a few degrees,
independent of the WMAP observing frequency. Also applying
the SMHW kernel, Mukherjee & Wang (2004) claimed to detect
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Figure 2. Visual inspection of the ILC map reveals four elongated valleys of cooler temperature that stretch from about the Galactic equator to nearly the south
Galactic pole. Ridges of warmer-than-average temperature lie between the cooler fingers. These features are a consequence of large-scale power in the southern sky.
It is more difficult to discern as much large-scale power in the northern sky. Cold Spot I is located near the northernmost part of one of the fingers, while Cold Spot II
(within the red curve) is near the southernmost part of another finger.

non-Gaussianity at ∼99% significance. The signal is a positive
kurtosis in the wavelet coefficients attributed to a larger than
expected number of 3◦ to 5◦ cold spots in the southern Galactic
hemisphere. Mukherjee & Wang (2004) found the same result
for the ILC map. Following up on this, Cruz et al. (2006) reported
that the kurtosis in the wavelet distribution could be exclusively
attributed to a single cold spot, which we call Cold Spot II, in
the sky map at Galactic coordinates (l = 209◦, b = −57◦),
as indicated by the red curve in Figure 2. In an analysis of the
three-year WMAP data, Cruz et al. (2007a) reported only 1.85%
of their simulations deviated from the WMAP data either in the
skewness or in the kurtosis estimator at three different angular
scales, a 2.35σ effect.

In replicating the SMHW approach described above, Zhang
& Huterer (2010) found ∼2.8σ evidence of kurtosis and ∼2.6σ
evidence for a cold spot. These values are in reasonable
agreement with the earlier findings for individual statistics.
Zhang and Huterer then allowed for a range of possibilities
in disk radius, spatial filter shape, and the choice of non-
Gaussian statistic in a “superstatistic.” They found that 23%
of simulated Gaussian random skies are more unusual than the
WMAP sky. Zhang & Huterer (2010) also analyzed the sky maps
with circular disk and Gaussian filters of varying widths. They
found no evidence for an anomalous cold spot at any scale when
compared with random Gaussian simulations. When requiring
the SMHW spatial filter shape, 15% of simulated Gaussian
random skies were more unusual than the WMAP sky using
the constrained superstatistic.

With 1.85%–15% of random Gaussian skies more deviant
than WMAP data in a wavelet analysis (depending on the
marginalization of posterior choices) potential physical inter-
pretations have been proposed for this 1.45σ–2.35σ effect. In
theory, cold spots in the CMB can be produced by the integrated
Sachs–Wolfe (ISW) effect as CMB photons traverse cosmic
voids along the line of sight. If Cold Spot II is due to a cosmic
void, it would have profound implications because ΛCDM does
not produce voids of sufficient magnitude to explain it. Mota
et al. (2008) examined void formation in models where dark en-
ergy was allowed to cluster and concluded that voids of sufficient
size to explain Cold Spot II were not readily produced. Rudnick
et al. (2007) examined number counts and smoothed surface

brightness in the NRAO VLA Sky Survey (NVSS) radio source
data. They claimed a 20%–45% deficit in the NVSS smoothed
surface brightness in the direction of Cold Spot II. However,
this claim was refuted by Smith & Huterer (2010), who found
no evidence for a deficit, after accounting for systematic effects
and posterior choices made in assessing statistical significance.
Further, Granett et al. (2010) imaged several fields within Cold
Spot II on the Canada–France–Hawaii Telescope and attained
galaxy counts that rule out a 100 Mpc radius spherical void at
high significance, finding no evidence for a supervoid.

Cruz et al. (2007b) suggested that the cold spot could be the
signature of a topological defect in the form of a cosmic texture
rather than an adiabatic fluctuation. This suggestion was further
discussed by Bridges et al. (2008) and Cruz et al. (2008): they
estimate that a texture with Gμ ≈ 1.5 × 10−6 could produce
a cold spot with the observed properties. Independently, CMB
power spectra combined with other cosmological data can be
used to place limits on a statistical population of topological
defects. Urrestilla et al. (2008) placed a 95% confidence upper
limit of Gμ < 1.8×10−6 based on Hubble constant, nucleosyn-
thesis, and CMB (including three-year WMAP) data. Textures
at this level are compatible with the cold spot and are neither
favored nor disfavored by parameter fits. Following the method
described in Urrestilla et al. (2008), we now place a power spec-
trum based 95% confidence upper limit of Gμ < 1.5 × 10−6

using the seven-year WMAP data, finer scale CMB data, and
the Hubble constant. Since the new 95% CL upper limit derived
from the power spectrum matches the value needed to explain
the cold spot within the simple texture model previously dis-
cussed in the literature, that model is now disfavored; however,
a more sophisticated model might still allow a texture interpre-
tation.

In conclusion, there are two possible points of view. One
is that the cold spot is anomalous and might be produced
by a texture or other mechanism; this cannot be ruled out
with current data. The other view is that the <2.35σ (after
posterior correction) statistical evidence for a cold spot feature
is not compelling, and that the texture explanation is disfavored.
Had the anomaly been significant at the part per million level
instead of a part per thousand, the posterior marginalization
issues would be moot: the feature would be considered as a
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Figure 3. Curve is a Blackwell–Rao estimate of the relative likelihood of the
quadrupole power l(l+1)C2/2π in μK2 from WMAP. The WMAP ILC data were
smoothed to 5◦ and the KQ85y7 mask was used, both degraded to res 5. The
Gibbs sampling produced a likelihood that has been marginalized over all other
multipoles. The highly non-Gaussian likelihood distribution is characteristic
of the lowest-l multipoles. For l > 32 the curves become nearly Gaussian.
The vertical line with the label “ΛCDM” is the expected quadrupole from the
full power spectrum ΛCDM model best fit to the WMAP data. The maximum
likelihood of the WMAP measured l = 2 quadrupole is at the vertical dotted
line. These two values are consistent to well within the 95% confidence region.
The WMAP quadrupole is not anomalously low.

real anomaly. If real, a void explanation would have been in
strong conflict with the ΛCDM model, but a population of
topological defects that contribute at a low level to the CMB
power spectrum would not so much falsify the model as provide
a small modification to it. Given the evidence to date, the WMAP
Team is of the opinion that there is insufficient statistical support
to conclude that the cold spot is a CMB anomaly relative to
ΛCDM.

4. THE LOW QUADRUPOLE AMPLITUDE

The CMB quadrupole is the largest observable structure in
our universe. The magnitude of the quadrupole has been known
to be lower than models predict since it was first measured
by COBE (Bennett et al. 1992; Hinshaw et al. 1996). It is
also the large-scale mode that is most prone to foreground
contamination, owing to the disk-like structure of the Milky
Way; thus estimates of the quadrupole require especially careful
separation of foreground and CMB emission. The ILC method
of foreground suppression is especially appropriate for large-
scale foreground removal, since the ILC’s complex small-scale
noise properties are unimportant in this context. With a sky cut
applied, residual foreground contamination of the quadrupole in
the ILC map is determined to be insignificant (Gold et al. 2011;
Jarosik et al. 2011). In this section we reassess the statistical
significance of the low quadrupole power in the ILC map.

A statistical analysis of the quadrupole must account for the
highly non-Gaussian posterior distribution of the low-l (l � 32)
multipoles. In this paper we use Gibbs sampling of the low-
l power spectrum to evaluate the quadrupole (O’Dwyer et al.
2004; Dunkley et al. 2009). The WMAP ILC data are smoothed
to 5◦ resolution (Gaussian, FWHM), degraded to HEALPix
resolution level 5 (Nside = 32), and masked with the KQ85y7
mask. The Gibbs sampling produces a likelihood that has
been marginalized over all other multipoles. A Blackwell–Rao
estimator of the form of Equation (19) of Wandelt et al. (2004)
is used to produce the WMAP quadrupole likelihood shown in
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Figure 4. Cumulative distribution function of the quadrupoles from the Gibbs
sampling based on 300,000 points. The vertical line is the predicted ΛCDM
model quadrupole value. The cumulative probability is 0.824 where the vertical
line crosses the cumulative distribution function. Since the expected quadrupole
from the ΛCDM model is well within the 95% confidence range of the measured
quadrupole, accounting for noise and cosmic variance, we conclude that the
measured quadrupole is not anomalously low.

Figure 3. The peak of the likelihood is at 200 μK2, the median is
at 430 μK2, and the mean is at 1000 μK2. The 68% confidence
range extends from 80 to 700 μK2, and the 95% confidence
range extends from 40 to 3200 μK2.

Figure 4 shows the cumulative quadrupole distribution de-
rived from 300,000 Gibbs samples. The mean quadrupole pre-
dicted by the best-fit ΛCDM model lies at a cumulative probabil-
ity of 0.824, well within the 95% confidence region allowed by
the data. We conclude that the WMAP quadrupole measurement
is not anomalously low. Further, while alternative models that
predict a lower quadrupole will better match this specific part
of the data, it is impossible to significantly favor such models
on the basis of quadrupole power alone.

5. THE LACK OF LARGE-SCALE POWER

The angular correlation function complements the power
spectrum by measuring structure in real space rather than
Fourier space. It measures the covariance of pixel temperatures
separated by a fixed angle,

C(θij ) = 〈TiTj 〉, (6)

where i and j are two pixels on the sky separated by an angle θ ,
and the brackets indicate an ensemble average over independent
sky samples. Expanding the temperature in spherical harmonics,
and using the addition theorem for spherical harmonics, it is
straightforward to show that C(θij ) is related to the angular
power spectrum by

〈C(θij )〉 = 1

4π

∑
l

(2l + 1)〈Cl〉WlPl(cos θ ), (7)

where 〈Cl〉 is the ensemble-average angular power spectrum, Wl

is the experimental window function, and Pl are the Legendre
polynomials. If the CMB is statistically isotropic, C(θij ) ≡ C(θ )
depends only on the separation of pixels i and j, but not on
their individual directions. Since we are unable to observe an
ensemble of skies, we must devise estimates of C(θ ) using the
temperature measured in our sky. One approach is to assume
that the CMB is ergodic (statistically isotropic) in which case
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Figure 5. Angular correlation function of the full-sky WMAP ILC map is shown
(heavy black curve). For comparison, the angular correlation function for the
best-fit ΛCDM model is also shown (thin black curve), along with the associated
68% and 95% confidence ranges, as determined by Monte Carlo simulations.
The angular correlation function of the full-sky map is seen to be within the 95%
confidence range of the best-fit ΛCDM model. This angular correlation function
was computed from the Cl power spectrum, but is nearly indistinguishable from
a pixel pair computation. Either way, there is no evidence of a lack of large-scale
power.

C(θ ) can be estimated by averaging all temperature pairs in the
sky separated by an angle θ :

C(θ ) = 〈TiTj 〉|� ij=θ , (8)

where the brackets indicate an average over directions i and j
such that � ij = θ (to within a bin). Another approach is to
estimate the angular power spectrum Cl and to compute C(θ )
using Equation (7).

The angular correlation function over the full-sky ILC map
from Equation (7) is shown in Figure 5. As can be seen, C(θ ) lies
within the 95% confidence range of the best-fit ΛCDM model for
all θ , as determined by Monte Carlo simulations. This supports
the conclusion that there is no statistically significant lack of
large-scale power on the full sky.

Spergel et al. (2003) applied the pixel-pair estimator to the
first-year WMAP data and found an almost complete lack
of correlated structure at angles >60◦ for the sky, but that
calculation was with a Galactic foreground cut. A foreground
cut was made because of the concern that additional power
from within the Galactic cut may arise from foregrounds. For
regions outside the cut, it was appreciated that systematic errors
and residual Galactic foregrounds are far more likely to add
correlated power to the sky maps than to remove it. They
quantified the lack of large-angular-scale power in terms of
the statistic

S1/2 ≡
∫ 1/2

−1
C2(θ )d cos θ (9)

and found that fewer than 0.15% of simulations had lower values
of S1/2. A low S1/2 value persists in later WMAP sky maps.

Copi et al. (2007) and Copi et al. (2009) claimed that
there is evidence that the WMAP temperature fluctuations
violate statistical isotropy. They directly computed the angular
correlation function from pixel pairs, as in Equation (8), omitting
from the sum pixel pairs where at least one pixel was within the
foreground mask. The KQ85 foreground mask (at that time)

removed 18% of the pixels from the full sky (now 22% for
KQ85y7), while KQ75 removed 29%. Copi et al. found p-values
of ≈ 0.03% for their computation of S1/2, concluding that the
data are quite improbable given the model. The exact p-value
depended on the specific choice of CMB map and foreground
mask. Cayón (2010) finds no frequency dependence to the
effect.

Efstathiou et al. (2010) find that the value of S1/2 is sensitive to
the method of computation. For example, Efstathiou et al. (2010)
computed the angular correlation function using the estimator

C(θ ) = 1

4π

∑
ll′

(2l + 1)M−1
ll′ C̃l′Pl(cos θ ) (10)

where

Mll′ = 1

2l + 1

∑
mm′

|Klml′m′ |2 (11)

and Klml′m′ is the coupling between modes (lm) and (l′m′)
induced by the sky cut, and C̃l′ is the pseudo-power spectrum
obtained by transforming the sky map into spherical harmonics
on the cut sky. This estimator produced a significantly larger
value for S1/2 than the estimator in Equation (6).

Efstathiou et al. (2010) also reconstructed the low-l multi-
poles across the foreground sky cut region in a manner that was
numerically stable, without an assumption of statistical isotropy.
Their method relied on the fact that the low multipole WMAP
data are signal dominated and that the cut size is modest. They
showed that the small reconstruction errors introduce no bias
and they did not depend on assumptions of statistical isotropy
or Gaussianity. The reconstruction error only introduced a small
“noise” to the angular correlation function without changing its
shape.

The original use of a sky cut in calculating S1/2 was motivated
by concern for residual foregrounds in the ILC map. We now
recognize that this precaution was unnecessary as the ILC
foreground residuals are relatively small. Values of S1/2 are
smaller on the cut sky than on the full sky, but since the full
sky contains the superior sample of the universe and the cut sky
estimates suffer from a loss of information, cut sky estimates
must be considered sub-optimal. It now appears that the Spergel
et al. (2003) and Copi et al. (2007, 2009) low p-values result from
both the a posteriori definition of S1/2 and a chance alignment of
the Galactic plane with the CMB signal. The alignment involves
Cold Spot I and the northern tips of the other fingers and can
also be seen in the maps that will be discussed in Section 7.

Efstathiou et al. (2010) corrected the full-sky WMAP ILC map
for the estimated ISW signal from redshift z < 0.3 as estimated
by Francis & Peacock (2010). The result was a substantial
increase in the S1/2. Yet there is no large-scale cosmological
significance to the orientation of the sky cut or the orientation
of the local distribution of matter with respect to us; thus the
result from Spergel et al. and Copi et al. must be influenced by
a chance alignment of the ISW effect and a posterior statistical
bias in the choice of statistic.

More generally, Hajian et al. (2005) applied their bipolar
power spectrum technique and found no evidence for a violation
of statistical isotropy at 95% CL for angular scales correspond-
ing to multipole moments l < 60.

The low value of the S1/2 integral over the large-angle
correlation function on the cut-sky results from a posterior
choice of the statistic. Further, it is a sub-optimal statistic in
that it is not computed over the full sky. There is evidence for a
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Figure 6. (a) χ2 per degree of freedom of the seven-year temperature–
temperature power spectrum data relative to the best-fit ΛCDM model. Light
gray points are from 50 simulations that used the same ΛCDM model with
the appropriate noise and cosmic variance included, where the error bars
are driven by the number of simulations. The data and simulations were
run through the same data analysis pipeline. These simulations were used
to help fit the effective fraction of the sky, fsky to use for the data analysis.
(b) The χ2 per degree of freedom is compared for the three-year, five-year,
and seven-year maps. Small differences in the fit model have a negligible
effect on these plots. The χ2 per degree of freedom for l ≈ 300 has been
slightly growing with additional data, while other multipole moment ranges
are more random with additional data. (c) The χ2 per degree of freedom had
the same WMAP data been taken in a reverse time order. The l < 400 region
appears robust, while the χ2 variations for l > 400 appear more random. (d)
Variation of χ2 with the choice of Galactic foreground mask appears random for
l > 400.

chance alignment of the Galactic plane cut with the CMB signal,
and there is also evidence of a chance alignment of the primary
CMB fluctuations with secondary ISW features from the local
density distribution. The full-sky angular correlation function
lies within the 95% confidence range. For all of these reasons,
we conclude that the large-angle CMB correlation function is
consistent with ΛCDM.
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Figure 7. Black curve is the cumulative probability of the WMAP temperature
data based on 499 simulations. All of the simulations were drawn from the
same ΛCDM model, but χ2 was evaluated with respect to the best-fit model for
each realization. Of these, 412 (82.6%) had a lower χ2 than the vertical line at
1224.6. Thus, the WMAP power spectrum is statistically compatible with the
model. The red curve is a χ2 distribution with 1170 degrees of freedom, shown
for comparison.

6. THE GOODNESS OF FIT OF THE STANDARD MODEL

The power spectrum of the WMAP data alone places strong
constraints on possible cosmological models (Dunkley et al.
2009; Larson et al. 2011). Plots of the χ2 per degree of freedom
of the temperature–temperature power spectrum data relative to
the best-fit ΛCDM model are shown in Figure 6. In Figure 7
the cumulative probability of the WMAP data given the ΛCDM
model is evaluated based on simulations. All of the simulated
skies were calculated for the same input ΛCDM model, but
each result was fit separately. The WMAP sky is statistically
compatible with the model within 82.6% confidence, with an
uncertainty of ∼5%.

The χ2 can be elevated because of excess scatter within each
multipole relative to the experimental noise variance. It could
also be elevated because of an accumulation of systematic devia-
tions of the model from the data across different multipoles, such
as would happen if a parameter value were incorrect. Therefore,
despite an acceptable overall χ2, we examine other aspects of
the power spectrum data relative to the model that may have
been masked by the inclusion of all of the data into a single χ2

value. We examine both of these possibilities below.
To explore the l-to-l′ correlation properties of Cl, we compute:

S(Δl) ≡
∑

l

(
Cdata

l − Cbestfit
l

)(
Cdata

l+Δl − Cbestfit
l+Δl

)√
2(Cbestfit

l +Nl )2

(2l+1)f 2
sky,l

2(Cbestfit
l+Δl +Nl+Δl )2

(2l+2Δl+1)f 2
sky,l+Δl

=
∑

l

fsky,lfsky,l+Δl

√(
l +

1

2

) (
l + Δl +

1

2

)

×
(
Cdata

l − Cbestfit
l

)(
Cdata

l+Δl − Cbestfit
l+Δl

)(
Cbestfit

l + Nl

)(
Cbestfit

l+Δl + Nl+Δl

) .

When Δl = 0, this quantity is exactly χ2:

S(Δl = 0) = χ2.
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Figure 8. We compute Δl = l − l′ correlation properties of Cl for nearby multipoles for the WMAP data (blue) and comparable simulations (red). For the most part,
the data and simulations are in good agreement. The most discrepant correlations in Cl are for Δl = 1 near l ∼ 320 and Δl ∼ 2 near l ∼ 280.

For l = 300–349 and fsky ∼ 0.8,

S(Δl) ∼ 200
349∑

l=300

(
Cdata

l − Cbestfit
l

)(
Cdata

l+Δl − Cbestfit
l+Δl

)(
Cbestfit

l + Nl

)(
Cbestfit

l+Δl + Nl+Δl

) .

Since the data suggest S(Δl = 1) ∼ −20 for l = 300–349,
we find (

Cdata
l − Cbestfit

l

)(
Cdata

l+1 − Cbestfit
l+1

)(
Cbestfit

l + Nl

)(
Cbestfit

l+1 + Nl+1
) ∼ −0.002.

For this multipole range (Cbestfit
l + Nl) ∼ 3500 μK2, thus,(

Cdata
l − Cbestfit

l

)(
Cdata

l+1 − Cbestfit
l+1

) ∼ −(160 μK2)2.

Note that the power spectrum of the Finkbeiner et al. (1999)
dust map in this multipole range is <10 μK2 in W band, i.e.,
more than an order of magnitude smaller.

Figure 8 shows the results of l-to-l′ correlation calculations of
Cl for different values of l − l′, calculated both for simulations
and for the WMAP data. For the most part, the data and simula-
tions are in good agreement. The most discrepant correlations
in Cl are for Δl = 1 near l ∼ 320 and Δl = 2 near l ∼ 280.

Motivated by the outlier Δl = 1 correlation at l ∼ 320 seen
in Figure 8, we further explore a possible even l versus odd l
effect in this portion of the power spectrum. (Note that this is
an a posteriori selection.) We define an even excess statistic,
E�, which compares the mean power at even values of � with
the mean power at odd values of �, within a given �-range.
It is essentially a measure of anticorrelation between adjacent
elements of the power spectrum, with a sign indicating the phase

of the anticorrelation:

E� =
〈
Cobs

� − Cth
�

〉
even − 〈

Cobs
� − Cth

�

〉
odd〈

Cth
�

〉 ,

where C� = �(� + 1)C�/2π , the superscript “obs” refers to the
observed power spectrum, and the superscript “th” refers to
a fiducial theoretical power spectrum used for normalization.
From this definition, it follows that E� > 0 is an even excess and
E� < 0 is an odd excess. The range of � is small enough that the
variation in Cth

� is also small and convenient for normalization.
We choose (a posteriori) to bin E� by Δ� = 50.

An apparent positive E� in the WMAP power spectrum in the
range � ∼ 200–400 is investigated quantitatively using Monte
Carlo simulations. Our analysis is limited to 33 � � < 600,
which is the part of the power spectrum that is flat-weighted
on the sky and where the Monte Carlo Apodised Spherical
Transform EstimatoR (Hivon et al. 2002) pseudo-spectrum is
used. Because the binning is by Δ� = 50, the actual � range
for this analysis is 50–599. The Monte Carlo realizations are
CMB sky map simulations incorporating appropriate WMAP
instrumental noise and beam smoothing. Each power spectrum,
whether from observed data or from the Monte Carlo generator,
is co-added from 861 year-by-year cross spectra in the V and W
bands, with weighting that accounts for the noise and the beam
transfer functions.

Figure 9 shows that an even excess of significance ∼2.7σ
is found for � = 300–349. If we combine the two adjacent
bins between � = 250 and � = 349, the significance of E�

in the combined bins is ∼2.9σ , with a probability to exceed
(PTE) of 0.26% integrated directly from the Monte Carlo
set (Figure 10). However, it is important to account for the
fact that this significance level is inflated by the posterior
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Figure 9. Top: even excess E� in the observed power spectrum, in bins
of Δ� = 50, compared to the mean and scatter from 11436 Monte Carlo
realizations. Bottom: E� as in the top plot, converted to significance units by
normalizing to the Monte Carlo scatter in each bin. Only the � = 250–299 and
� = 300–349 bins show a significance greater than 1σ .

bias of having chosen the � range to give a particularly high
value.

We attempt to minimize the posterior bias by removing bin
selection from the Monte Carlo test. Instead of focusing on one
bin, the revised test is based on the distribution of the maximum
value of the significance E�/σ (E�) over all bins in each Monte
Carlo realization. The 11,436 Monte Carlo realizations are split
into two groups: 4000 are used to compute the normalization
σ (E�) for each bin and 7436 are used to compute the distribution
of the maximum value of E�/σ (E�), giving the histogram that is
compared to the single observed value.

The results of the de-biased test are shown in Figure 11.
In addition to the avoidance of bin selection, this test also
incorporates negative excursions of E�, which are excesses of
power at odd �. The test shows that the visually striking even
excess in the � = 300–350 bin is actually of low significance,
with a PTE of 5.1% (top of Figure 11). However, the test also
shows that large excursions in odd-� power are less frequent in
the observed power spectrum than in the Monte Carlos, such
that 99.3% of the Monte Carlos have a bin with greater odd-�
significance than the observed data (bottom of Figure 11). Thus
there appears to be a modestly significant suppression of odd-�
power. This effect is only slightly relieved by accounting for the
posterior selection of the enhanced even excess, as seen in the
bottom panel of Figure 11.

We find no evidence for a radiometer dependence of the effect.
We were originally suspicious that the effect could arise from
an interaction of the foreground mask with large-scale power in
the map, but our simulation results dismissed this suspicion.

Steps and other sharp features in the power spectrum P (k)
tend to be smeared out in translation to Cl space. For example, for
the non-standard “meandering” cosmological inflation model
of Tye & Xu (2010) the scalar mode responsible for inflation
meanders in a multi-dimensional potential. This leads to a
primordial CMB power spectrum with complicated small-
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amplitude variations with wavenumber k. Conversion to Cl has
the effect of a significant amount of smoothing (see, for example,
Figure 1.4 of Wright 2004). It is not likely that any cosmological
scenario can cause the observed odd excess deficit. Likewise,
we are aware of no experimental effects that could cause an
odd excess deficit. We therefore conclude that this <3σ effect
is most likely a statistical fluke.

7. ALIGNED QUADRUPOLE AND OCTUPOLE

The alignment of the quadrupole and octupole was first
pointed out by Tegmark et al. (2003) and later elaborated on by
Schwarz et al. (2004), Land & Magueijo (2005a), and Land &
Magueijo (2005b). The fact of the alignment is not in doubt, but
the significance and implications of the alignment are discussed
here.

Do foregrounds align the quadrupole and dipole? Chiang et al.
(2007) conclude that the lowest spherical harmonic modes in
the ILC map are significantly contaminated by foregrounds.
Park et al. (2007) find that the residual foreground emission
in a map resulting from their own independent foreground
analysis is not statistically important to the large-scale modes
of CMB anisotropy. The large-scale modes of their map show
anti-correlation with the Galactic foreground emission in the
southern hemisphere, but they are agnostic on whether this is due
to residual Galactic emission or by simply a matter of chance.
Park et al. (2007) also assess the WMAP Team’s ILC map and
conclude that residual foreground emission in the ILC map does
not affect the estimated large-scale values significantly. Tegmark
et al. (2003) also performed their own foreground analysis and
conclude that their CMB map is clean enough that the lowest
multipoles can be measured without any galaxy cut at all. They
also point out that much of the CMB power falls within the
Galaxy cut region, “seemingly coincidentally.” In other words,
they conclude that the residual foregrounds are subdominant
to the intrinsic CMB signal even without any Galaxy cut so
long as a reduced foreground map is used. de Oliveira-Costa
& Tegmark (2006) believe that it is more likely that the true
alignment is degraded by foregrounds rather than created by
foregrounds.

We determine that the direction of the quadrupole by rotating
the coordinate system until |a�,�|2 +|a�,−�|2 is maximized, where
� = 2 and where a�,m are the spherical harmonic coefficients.
This maximizes the power around the equator of the coordinate
system. The optimization is done by numerically checking the
value of this quantity where the z vector of the coordinate
system is rotated to the center of each half-degree pixel in a
res 7 (Nside = 128) HEALPix pixelization. The pixel where
this value is maximized is taken to be the “direction” of the
quadrupole. The pixel on the opposite side of the sphere has the
same value; we arbitrarily pick one. Using a similar method, a
“direction” is found for the octupole, with � = 3.

The probability that l = 2 and l = 3 multipoles would be
aligned is shown in Figure 12. The <1◦ alignment in our sky
appears to be quite improbable based upon random simulations
of the best-fit ΛCDM model.

A resolution level 7 map has 196,608 pixels of about 0.◦5 di-
ameter. The best-fit alignment axis specifies two pixels directly
opposite each other on the sphere. The probability of two axes
randomly aligning in the same pair of pixels is then 2/196,608 =
0.001%. The probability of getting an alignment within 0.◦25 of
a given axis is 0.00095%, which is close to 0.001% above.

In an attempt to gain insight into the alignment, we start
with the ILC full-sky temperature map. We then produce a
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Figure 12. Probability of a greater quadrupole–octupole alignment is given as a
function of the alignment angle, in degrees. The probability given here does not
account for the a posteriori selection of a multipole alignment search, nor does
it take into account the choice of the quadrupole and the octupole moments in
particular.

map of ΔT 2, which is a map of anisotropy power. This map
is constructed by smoothing the seven-year ILC map by 10◦,
removing the mean value, and squaring. Since the ILC map
is already smoothed to 1◦, the total smoothing corresponds
to a Gaussian with FWHM =

√
102 + 12

◦ = 10.◦05. We then
create various masks to probe whether the dipole-quadrupole
alignment can be attributed to one or perhaps two localized
features in the map. The edges of some of the masks are found
from contours of the ΔT 2 map. The contours were selected by
eye, from a gray-scale Mollweide projection in an image editing
program, and then converted to HEALPix fits files. Other trial
masks were chosen more randomly, again to probe the sensitivity
of the alignment to different regions of the map.

For each mask, we take the seven-year ILC map that has been
smoothed by 10◦, zero the region inside the mask, and take
a spherical harmonic transform. From the a�m coefficients, we
determine the angle between the quadrupole and octupole.

Figure 13 shows the smoothed, squared temperature map
(in color), and the effect of various masks (in gray) on the
quadrupole–octupole alignment. Masking Cold Spot I elim-
inates any significant alignment. However, keeping that re-
gion but masking other regions also significantly reduces
the quadrupole–octupole alignment. The posterior selection
of the particular masked regions is irrelevant as the point is
only to demonstrate that no single region or pair of regions
solely generates the <1◦ alignment. Rather the high degree of
quadrupole–octupole alignment results from the statistical dis-
tribution of anisotropy power over the whole sky. This rules out
single-void models, a topological defect at some sky position,
or any other such explanation. The alignment behaves as one
would expect if it originates from chance random anisotropy
amplitudes and phases. The alignment of the l = 2 and l = 3
multipoles is intimately connected with the large-scale cool fin-
gers and intervening warm regions, discussed earlier, as can be
seen in Figure 14. Although the alignment is indeed remarkable,
current evidence is more compatible with a statistical combina-
tion of full-sky data than with the dominance of one or two
discrete regions.

Francis & Peacock (2010) estimated the local (z < 0.3)
density field from the 2MASS and SuperCOSMOS galaxy
catalogs and used that field to estimate the ISW effect within
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Figure 13. We smooth and square the ILC map, as described in the text, to make a map of (ΔT )2 to roughly visualize the anisotropy power in a sky map (A). Cold
Spot I is the highest power region at this level of resolution, but several other regions also contribute substantial power at this scale. For map (A), the quadrupole
and octupole are aligned to within ∼1◦. To evaluate what regions contribute to this alignment, we mask selected gray areas as shown in the sky maps (B) through
(J). Each map is labeled by the degree of quadrupole–octupole alignment remaining after the gray mask is applied. Masking Cold Spot I in (B) or (H) eliminates any
significant alignment. However, keeping those regions and masking other regions also breaks the alignment to a significant degree. We conclude that no single region
or pair of regions generates the alignment. Rather, the combined power contributions from over a substantial fraction of the full-sky map cause the high degree of
quadrupole–octupole alignment. Note that the chance alignment of CMB power with the Galactic cut region discussed in Section 5 is apparent in map (A).

this volume. Large-scale features were extrapolated across
the Galactic plane. The effects of radial smearing from the
photometric galaxy sample were reduced by taking only three
thick redshift shells with Δz = 0.1. A linear bias was used
to relate galaxies to density, independent of both scale and
redshift within each of the three shells. They estimated that
the z < 0.3 data limit contains ∼40% of the total ISW
signal. Francis & Peacock (2010) removed their estimate of
the ISW effect from the WMAP map. One result was to raise the
amplitude of the quadrupole while the octupole amplitude was
relatively unchanged. More importantly, they reported that there
remains no significant quadrupole–octupole alignment after
the ISW removal. With the Francis & Peacock (2010) result,
the quadrupole–octupole alignment shifts from an early universe
property to a statistical fluke that the secondary anisotropy effect
from the local density distribution happens to superpose on the
primordial anisotropy in such a way as to align the quadrupole
and octupole.

8. HEMISPHERICAL AND DIPOLE POWER
ASYMMETRY

Claims of a dipole or hemispherical power asymmetry in
WMAP maps have appeared in the literature since the release

of the first-year WMAP data, with estimates of statistical sig-
nificance ranging up to 3.8σ . We distinguish between a “hemi-
spherical” power asymmetry, in which the power spectrum is
assumed to change discontinuously across a great circle on the
sky, and a “dipole” power asymmetry in which the CMB is as-
sumed modulated by a smooth cosine function across the sky,
i.e., the CMB is assumed to be of the form

T (n)modulated = (1 + w · n) T (n)unmodulated. (12)

Previous analyses of WMAP data in the literature have fit
for either hemispherical or dipolar power asymmetry, and the
results are qualitatively similar: asymmetry is found with similar
direction and amplitude in the two cases. However, analyses
that use optimal estimators (as we do in our analysis below)
have all studied the dipolar modulation (e.g., Hoftuft et al.
2009 and Hanson & Lewis 2009). Furthermore, theoretical
attempts to obtain cosmological power asymmetry by altering
the statistics of the primordial fluctuations (Gordon 2007;
Donogue et al. 2009; Erickcek et al. 2008, 2009) have all found
a dipolar modulation rather than a hemispherical modulation.
Therefore, we will concentrate on the dipolar modulation,
defined by Equation (12), for the sake of better comparison with
both early universe models, and with similar analyses in the
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l=2 l=2 + l=3

l=3 l=2 + l=3
Over  ILC

Figure 14. l = 2 quadrupole and l = 3 octupole maps are added. The combined map is then shown superposed on the ILC map from Figure 2. Note that the quadrupole
and octupole components arrange themselves to match the cool fingers and the warm regions in between. The fingers and the alignment of the l = 2 and l = 3
multipoles are intimately connected.

literature. Unambiguous evidence for power asymmetry would
have profound implications for cosmology.

We revisit this analysis and conclude that this claimed
anomaly is not statistically significant, after a posteriori choices
are carefully removed from the analysis. In looking for a power
asymmetry, the most significant issue is removing an arbitrary
choice of scale, either specified explicitly by a maximum
multipole l or implicitly by a sequence of operations such
as smoothing and adding extra noise that define a weighting
in l.

The first claimed hemispherical power asymmetry appeared
in Eriksen et al. (2004), based on the first-year WMAP data,
where a statistic for power asymmetry was constructed, and
its value on high-resolution WMAP data was compared to an
ensemble of Monte Carlo simulations in a direct frequentist
approach. They quoted a statistical significance of 95%–99%,
depending on the range of l selected. The details of this analysis
contained many arbitrary choices. Hansen et al. (2004, 2009)
also used a similar methodology. In Hansen et al. (2009), the
significance of a 2 � l � 600 hemispherical power asymmetry
was quoted as 99.6%.

A second class of papers used a low-resolution pixel likeli-
hood formalism to study power asymmetry. Eriksen et al. (2007)
used this approach to search for a dipole power asymmetry in
low-resolution three-year WMAP data and a statistical signifi-
cance of ∼99% was claimed. Hoftuft et al. (2009) repeated the
likelihood analysis at somewhat higher resolution and quoted
a statistical significance of 3.5σ–3.8σ for different choices of
resolution. Although the likelihood estimator contained fewer
arbitrary choices than the preceding class of papers, the low-
resolution framework still contained an arbitrary choice of an-
gular scale, which may be tuned (intentionally or unintention-
ally) to spuriously increase statistical significance. Hoftuft et al.
(2009) introduced an explicit cutoff multipole lmod and the CMB
signal was assumed to be unmodulated for l > lmod and mod-
ulated for l � lmod. Both Eriksen et al. (2007) and Hoftuft
et al. (2009) downgraded the data in resolution, smoothed with

a Gaussian window, and added extra white noise. These process-
ing steps implicitly defined a weighting in l, where the power
asymmetry is estimated, and introduced arbitrary choices into
the analysis.

A third approach to the analysis, based on optimal quadratic
estimators, recently appeared in Hanson & Lewis (2009). In
this approach, the WMAP data were kept at full resolution and
a minimum-variance quadratic estimator was constructed for
each of the three vector components of the dipole modulation
wi . Hanson and Lewis found ≈97% evidence for a dipole power
asymmetry at 2 � l � 40, and ≈ 99.6% evidence for dipole
power asymmetry at 2 � l � 60. However, the result was
strongly dependent on changing the l range, and quickly went
away for higher l. A significant shift was seen between the KQ75
and KQ85 masks, and between raw and clean maps, suggesting
that foreground contamination was not negligible.

Comparing these methods, we find that the Hanson & Lewis
(2009) optimal quadratic estimator has significant advantages
over other analysis methods that have appeared in the literature.

1. There are no arbitrary choices (such as smoothing scale)
in the optimal quadratic estimator. One can either look for
power asymmetry in a range of multipoles 2 � l � lmod, or
over the entire range of angular scales measured by WMAP,
and the estimator is uniquely determined by the minimum-
variance requirement in each case. None of the previously
considered methods had this property.

2. There is no need to degrade the WMAP data, or include
processing steps such as adding extra noise, since the
optimal quadratic estimator can be efficiently computed at
full WMAP resolution using the multigrid C−1 code from
Smith et al. (2007).

3. Statistical significance can be assessed straightforwardly by
comparing the estimator with an ensemble of Monte Carlo
simulations. In particular, maximum likelihood analyses
in the literature have assessed significance using Bayesian
evidence, but schemes for converting the evidence integral
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Figure 15. Probability for a Monte Carlo simulation to have a larger dipole
modulation than the co-added V+W WMAP data, as measured by the statistic
κ1, is shown as a function of the maximum multipole moment lmod that is
assumed to be modulated. This can be interpreted as the statistical significance
of power asymmetry for a fixed value of lmod, if one does not account for possible
a posteriori bias when choosing lmod.

into a frequentist probability are not a sufficient substitute
for true Monte Carlo simulations, which directly give the
probability for a simulation to be as anomalous as the data.

For these reasons, we have studied dipole power asymmetry
using the optimal quadratic estimator. We introduce a cutoff
multipole lmod and assume that the CMB is isotropic for l > lmod
and dipole modulated for 2 � l � lmod. There is an optimal
quadratic estimator ŵi for each of the three components of the
(vector) modulation w (Equation (12)), and an estimator κ̂1 for
the (scalar) amplitude of the modulation. Implementation details
of the estimators are presented in the Appendix, where we also
comment on the relation with maximum likelihood.

Figure 15 shows the probability that the value of the dipole
modulation statistic κ̂1 is larger than for the WMAP data, when
evaluated by Monte Carlo simulation. There are choices of lmod
where the power asymmetry appears to have high significance.
For example, when we chose the KQ85y7 mask and lmod = 67,
the probability for a simulation to have a value of κ̂1 that is
larger than the data is 0.7%. This could be interpreted as 2.5σ
evidence for a power asymmetry, but such an interpretation
would be inflating the statistical significance since the choice of
lmod is an a posteriori choice. Consider an analogous example
for the five-year Cl power spectrum. The power in Cl=512 is high
by 3.7σ , but this is not really a 3.7σ anomaly. Rather, it reflects
the fact that there are a large number of l values that could have
been chosen.

Now we seek to assess the global statistical significance of
the power asymmetry without making any a posteriori choices.
Consider the probability for a Monte Carlo simulation to have
a larger value of κ̂1 than the WMAP data, as a function of lmod.
This can be interpreted as the statistical significance for power
asymmetry in the range 2 � l � lmod, for a fixed choice of
lmod. Let η be the minimum value of the probability, which we
find to be η = 0.012 with the KQ75y7 mask (corresponding to
lmod = 66), or η = 0.007 with the KQ85y7 mask (corresponding
to lmod = 67). We now assess whether this value of η is
anomalously low. To determine this, we compute η for an
ensemble of Monte Carlo simulations where lmod is chosen to
maximize the value of η independently for each simulation.

We perform the maximization over the range 10 � lmod �
132. (The results depend only weakly on this choice of range;
we have taken the upper limit of the range to be twice as large
as the most anomalous lmod in the WMAP data.) We find that
the probability that a simulation has a value of η that is smaller
than for WMAP is 13% for the KQ75y7 mask, and 10% for the
KQ85y7 mask.

Motivated by the power asymmetry, Erickcek et al. (2009)
presented a variation of the curvaton inflationary scenario in
which the curvaton has a large-amplitude super-horizon spatial
gradient that modulates the amplitude of CMB anisotropy,
thereby generating a hemispherical power asymmetry that could
match the CMB data. Hirata (2009) used high-redshift quasars
to place a limit on the gradient in the amplitude of perturbations
that would be caused in this scenario. Their limit ruled out the
simplest version of this curvaton spatial gradient scenario. Our
new CMB results, presented here, largely remove the initial
motivation for this theory.

We conclude that there is no significant evidence for an
anomalous dipole power asymmetry in the WMAP data.

9. QUADRUPOLAR DEPENDENCE OF THE
TWO-POINT FUNCTION

There is another effect, related to the dipole power asymmetry
from Section 8, in which the two-point function of the CMB
contains a component that varies as a quadrupole on the
sky. Motivated by an anisotropic model of the early universe
proposed by Ackerman et al. (2007) that predicts such a
signal, Groeneboom & Eriksen (2009) used a Gibbs sampler
to claim “tentative evidence for a preferred direction” of
(l, b) = (110◦, 10◦) in the five-year WMAP map. A theoretical
model that predicts large-scale quadrupolar anisotropy was
also proposed by Gordon et al. (2005). A similar effect could
be caused by WMAP’s asymmetric beams, which were not
accurately represented in this work, and an algebraic factor was
missing in the analysis. In Hanson & Lewis (2009), the missing
algebraic factor was corrected and the effect was verified with
high statistical significance, using an optimal cut-sky quadratic
estimator. Optimal estimators had previously been constructed
in the all-sky case by Pullen & Kamionkowski (2007) and
Dvorkin et al. (2008).

Recently, Groeneboom et al. (2010) returned another fit, this
time including polarization, the factor correction, examinations
of beam asymmetries, noise misestimation, and zodiacal dust
emission. The new claim was 9σ evidence of the preferred di-
rection (l, b) = (96◦, 30◦), which was quite far from the original
alignment direction claimed. The new preferred direction was
toward the ecliptic poles, strongly suggesting that this is not
a cosmological effect. The claimed amplitude was frequency
dependent, also inconsistent with a cosmological effect. Zodia-
cal dust emission was ruled out as the source of the alignment.
Hanson & Lewis (2009) found that the beam asymmetry was a
large enough effect to explain the signal, although Groeneboom
et al. reported the opposite conclusion. The claimed statistical
significance of the quadrupolar power asymmetry is so high that
it seems impossible for it to be a statistical fluke or built up by
posterior choices, even given the number of possible anomalies
that could have been searched for.

We have implemented the optimal quadratic estimator fol-
lowing the approach of Hanson & Lewis (2009) and confirmed
that the effect exists with high statistical significance. Rather
than presenting an analysis that is tied to a particular model
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Figure 16. Quadrupolar bipolar power spectra, binned with Δl = 50, are shown
separately for V-band and W-band WMAP data, using the KQ75y7 mask. Only
the components of the bipolar power spectra that point along the ecliptic axis
are shown (i.e., components with M = 0 in ecliptic coordinates). A statistically
significant quadrupolar effect is seen, even for a single frequency band in a
single angular bin.

(either cosmological or instrumental), we have found it con-
venient to parameterize the most general quadrupolar power
asymmetry using the language of the bipolar spectrum from
Hajian & Souradeep (2003). This is reviewed in the Appendix.
The summary is that the most general quadrupolar anomaly
can be parameterized by two quantities A2M

ll and A2M
l−2,l which

are l-dependent and have five components corresponding to
the degrees of freedom of a quadrupole. If statistical isotropy
holds, then A2M

ll = A2M
l−2,l = 0. The special case where

A2M
ll ≈ A2M

l−2,l �= 0 corresponds to an anisotropic model in
which the local power spectrum varies across the sky (i.e.,
the quadrupolar analogue of the dipole modulation in Equa-
tion (12)). The special case where A2M

ll ≈ −2A2M
l−2,l �= 0 corre-

sponds to an anisotropic model in which the local power spec-
trum is isotropic, but hot and cold spots have preferred elliptic-
ity where the local magnitude and orientation varies across the
sky. Thus there are two independent “flavors” of quadrupolar
anomaly; the bipolar power spectrum distinguishes the two and
also keeps track of the l dependence. A proposed model for the
quadrupolar effect in the WMAP data can be tested by com-
puting the bipolar power spectrum of the model and comparing
with estimates of the bipolar spectrum from data.

Figure 16 shows the components of the bipolar power
spectrum of the WMAP data that point along the ecliptic axis
(i.e., A20

ll and A20
l−2,l in ecliptic coordinates). A nonzero bipolar

power spectrum is seen with high statistical significance, even
in a single bin with Δl = 50, confirming the existence of a
quadrupolar effect.

We implemented a number of diagnostic tests to characterize
the quadrupolar effect; our findings can be summarized as
follows.

1. Only the components of the bipolar power spectrum that
point in the ecliptic direction (i.e., components A2M

l1l2
with

M = 0 in ecliptic coordinates) contain a statistically
significant signal. The components with M = 1 or M = 2
are consistent with zero within their statistical errors, even
if we sum over all values of l to maximize signal-to-noise.

2. The effect is larger in the W band than V band, which is
inconsistent with a cosmological origin.

3. The angular dependence of the effect shows a bump at the
scale of the first acoustic peak (l ≈ 220), disfavoring an
explanation from foregrounds or noise, which would not be
expected to show acoustic peaks.

4. If we split the optimal quadratic estimator into contributions
from cross correlations between differential assemblies
(DAs) in WMAP, and auto correlations in which each DA
is correlated with itself, then we find that the amplitude
of the effect is consistent in the two cases, disfavoring
instrumental explanations that are not highly correlated
between channels (such as striping due to 1/f noise).

5. The bipolar power spectrum of WMAP satisfies A20
�� ≈

−2A20
�−2,�, corresponding to a model in which the small-

scale power spectrum is isotropic, but the shapes of hot
and cold spots are not. (In fact, for this reason, we have
used the term “quadrupolar effect” in this section rather
than “quadrupolar power asymmetry,” which would suggest
that the power spectrum is modulated. We favor the label
“effect” over “anomaly” because it is only an anomaly in
the absence of a plausible cause.)

Given the strong ecliptic alignment and that the ecliptic plane
was the symmetry axis of the WMAP observations, and the
non-blackbody frequency dependence, we conclude that this is
not a ΛCDM anomaly. It seems very likely that the observed
quadrupolar effect is the result of incomplete handling of
beam asymmetries. Beam asymmetry generates an instrumental
bipolar power spectrum that is consistent with all five items
above, and it is difficult to think of any other instrumental
contribution that satisfies these properties. However, we have
not yet simulated the effects of asymmetric beams to confirm
this explanation. A full investigation of the effect of beam
asymmetry is underway and preliminary indications from our
work to date are consistent with our hypothesis.

While a detailed explanation of the quadrupolar effect is
pending, it is important to have as much confidence as possible
that a large anomaly in WMAP does not bias the estimated
power spectrum. It is reassuring (item 5 above) that the angle-
averaged power spectrum appears to be statistically isotropic,
suggesting that the power spectrum is “blind” to the effect (or,
less sensitive to beam asymmetries, assuming that is the cause).
Furthermore, if beam asymmetry does turn out to explain the
quadrupolar effect, then the analysis in Appendix B of Hinshaw
et al. (2007) shows independently that the power spectrum bias
due to beam asymmetry is small. Nevertheless, it is important
to follow up on the studies to date, and we plan to do so in the
future.

10. CONCLUSIONS

In the context of this paper, we take an “anomaly” to refer
to a statistically unacceptable fit of the ΛCDM model to the
Cl data, a statistically significant deviation of the alm from
Gaussian random phases, or correlations between the alm. We
are not concerned here with the current uncertainty range of
parameter values allowed by the ΛCDM model or with whether
an alternative model is also an acceptable fit to the data.

Numerous claims of WMAP CMB anomalies have been
published. We find that there are a few valuable principles
to apply to assess the significance of suspected anomalies:
(1) human eyes and brains are excellent at detecting visual
patterns, but poor at assessing probabilities. Features seen in
the WMAP maps, such as the large Cold Spot I near the
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Figure 17. “SH” initials of Stephen Hawking are shown in the ILC sky map. The “S” and “H” are in roughly the same font size and style, and both letters are aligned
neatly along a line of fixed Galactic latitude. A calculation would show that the probability of this particular occurrence is vanishingly small. Yet, there is no case to
made for a non-standard cosmology despite this extraordinarily low probability event. It is clear that the combined selection of looking for initials, these particular
initials, and their alignment and location are all a posteriori choices. For a rich data set, as is the case with WMAP, there are a lot of data and a lot of ways of analyzing
the data. Low probability events are guaranteed to occur. The a posteriori assignment of a likelihood for a particular event detected, especially when the detection of
that event is “optimized” for maximum effect by analysis choices, does not result in a fair unbiased assessment. This is a recurrent issue with CMB data analysis and
is often a tricky issue and one that is difficult to overcome.

Galactic center region, can stand out as unusual. However,
the likelihood of such features cannot be discerned by visual
inspection of our particular realization of the universe. (2)
Monte Carlo simulations are an invaluable way to determine
the expected deviations within the ΛCDM model. Claims of
anomalies without Monte Carlo simulations are necessarily
weak claims. (3) Some parameters are weak discriminants of
cosmology, because they take on a broad range of values for
multiple realizations of the same model. (4) A posteriori choices
can have a substantial effect on the estimated significance of
features. For example, it is not unexpected to find a 2σ feature
when analyzing a rich data set in a number of different ways.
However, to assess whether a particular 2σ feature is interesting,
one is often tempted to narrow in on it to isolate its behavior. That
process involves a posteriori choices that amplify the apparent
significance of the feature.

Shortly after the WMAP sky maps became available, one of
the authors (L.P.) noted that the initials of Stephen Hawking
appear in the temperature map, as seen in Figure 17. Both the
“S” and “H” are beautifully vertical in Galactic coordinates,
spaced consistently just above the b = 0 line. We pose the
question, what is the probability of this occurrence? It is
certainly infinitesimal; in fact, much less likely than several
claimed cosmological anomalies. Yet, we do not take this
anomaly seriously because it is silly. The Stephen Hawking
initials highlight the problem with a posteriori statistics. By
looking at a rich data set in multiple different ways, unlikely
events are expected. The search for statistical oddities must be
viewed differently from tests of pre-determined hypotheses. The
data have the power to support hypothesis testing rooted in ideas
that are independent of the WMAP data. We can ask which of
two well-posed theoretical ideas is best supported by the data.
Much of the WMAP analysis happens in a different context
asking, “What oddities can I find in the data?”

For example, no one had predicted that low-l multipoles might
be aligned. Rather, this followed from looking into the statistical
properties of the maps. Simulations, both by the WMAP team
and others, agree that this is a highly unusual occurrence for the

standard ΛCDM cosmology. Yet, a large fraction of simulated
skies will likely have some kind of oddity. The key is whether
the oddity is specified in advance.

The search for oddities in the data is essential for testing
the model. The success of the model makes these searches even
more important. A detection of any highly significant a posteriori
feature could become a serious challenge for the model. The
less significant features discussed in this paper provided the
motivation for considering alternative models and developing
new analysis of WMAP (and soon Planck) data. The oddities
have triggered proposed new observations that can further test
the models.

It is often difficult to assess the statistical claims. It may well
be that an oddity could be found that motivates a new theory,
which then could be tested as a hypothesis against ΛCDM. The
data support these comparisons. Of course, other cosmological
measurements must also play a role in testing new hypotheses.
No CMB anomaly reported to date has caused the scientific
community to adopt a new standard model of cosmology, but
claimed anomalies have been used to provoke thought and to
search for improved theories.

We find that Cold Spot I does not result from Galactic
foregrounds but rather forms the northernmost part of one of
four cool “fingers” in the southern sky. Its amplitude and extent
are not unusual for ΛCDM. In fact, structures with this nature
are expected.

We find that Cold Spot II is at the southernmost end of a
different one of the southern fingers, and it has been shown not
to be an anomalous fluctuation.

We find that the amplitude of the l = 2 quadrupole component
is not anomalously low but well within the 95% confidence
range.

We conclude that there is no lack of large-scale CMB power
over the full WMAP sky. The low value of the S-statistic integral
over the large-angle correlation function on the cut sky results
from a posterior choice of a sub-optimal (i.e., not full sky)
statistic, S1/2, a chance alignment of the Galactic plane cut
with CMB signal, and a chance alignment of primary CMB
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fluctuation features with secondary ISW features from the local
density distribution.

We find that the quadrupole and octupole are aligned to a
remarkable degree, but that this alignment is not due to a single
feature in the map or even a pair of features. The alignment
does not appear to be due to a void, for example. We find
that the alignment is intimately associated with the fingers of
the large-scale anisotropy visible in the southern sky, and it
results from the statistical combination of fluctuations over the
full sky. There is also evidence that the alignment is due, in
part, to a coincidental alignment of the primary anisotropy with
the secondary anisotropy from the local density distribution
through the ISW effect. At the present time the remarkable
degree of alignment appears to be no more than a chance
occurrence, discovered a posteriori with no motivating theory.
A new compelling theory could change this conclusion.

There is a portion of the power spectrum where there is a
marginally significant lack of odd multipole power relative to
even multipole power, but overall the WMAP data are well fit
by the ΛCDM model. There is no systematic error that we are
aware of that could cause the even power excess, nor are there
any cosmological effects that would do so. We conclude that the
even excess is likely a statistical fluctuation that was found a
posteriori. No motivating theory for this phenomenon is known.

We find that claims of hemispherical and/or dipole asymme-
tries have suffered from a posteriori choices. After carrying out
an analysis in a manner that avoids a posteriori bias, we find that
the evidence for a hemispherical power asymmetry is weak.

Evidence has been reported for a significant quadrupolar
power asymmetry that does not appear to be cosmological in
origin and most likely results from an incomplete propagation
of beam asymmetries. A careful analysis will be a subject of
future work.

We have examined selected claims of CMB anomalies, but
this paper is not a comprehensive review article and we have
not attempted to address every anomaly paper in the literature.
However, we can extend our results by recognizing that various
claims of anomalies are not necessarily independent from those
that have been examined. For example, there are smaller-scale
consequences of the fact that the value of the quadrupole on our
sky is low (but not anomalously low) compared with the max-
imum likelihood expected value for the best-fit ΛCDM model.
The amplitudes of moderate-to-small-scale hot and cold spots
are expected to be reduced statistically relative to their predicted
amplitude in the best-fit ΛCDM model due to the reduced con-
tribution from the quadrupole component. That is, the tempera-
ture anisotropy in a specific spot has contributions from a range
of multipoles, including the quadrupole contribution. Since the
power in the multipoles scales as l−2, the low quadrupole value
in our sky statistically reduces the amplitude stretch of hot and
cold spots in the map of our sky. This should help, at least in
part, to explain the results of Hou et al. (2009), Monteserin et al.
(2008), Ayaita et al. (2010), and Larson & Wandelt (2004). An-
other example where the results from this paper may relate to
a claimed anomaly is our report of a quadrupolar power asym-
metry. This may be the effect that was detected by Wiaux et al.
(2006) through an analysis with a second Gaussian derivative.
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APPENDIX

DIPOLAR AND QUADRUPOLR POWER
ASYMMETRY ESTIMATORS

A.1. ESTIMATORS FOR DIPOLAR AND
QUADRUPOLAR ANOMALIES

In this appendix, we present the detailed construction of
the estimators used to study dipole power asymmetry in
Section 8 and quadrupolar dependence of the two-point function
in Section 9.

A.1.1. Bipolar Power Spectrum

If statistical isotropy is assumed, then the two-point function
of the CMB is parameterized by the power spectrum C�:

〈a�1m1a�2m2〉 = (−1)m1C�1δ�1�2δm1,−m2 . (A1)

The bipolar power spectrum, introduced in Hajian &
Souradeep (2003), is a formalism for analogously parameter-
izing the two-point function if the assumption of statistical
isotropy is relaxed. If we decompose the two-point function
〈a�1m1a�2m2〉 into a sum of terms which transform under rota-
tions with total angular momentum L, then we arrive at the
following expansion:

〈a�1m1a�2m2〉 =
√

(2�1 + 1)(2�2 + 1)
∑
LM

ALM∗
�1�2

√
2L + 1

×
(

�1 �2 L
0 0 0

) (
�1 �2 L
m1 m2 M

)
. (A2)

This equation defines the bipolar power spectrum ALM
�1�2

. (Note
that our normalization and sign convention differ from Hajian
& Souradeep (2003); this will simplify some of the equations
that follow.)

The bipolar power spectrum has the following properties.

1. ALM
�1�2

vanishes unless −L � M � L, the triple (�1, �2, L)
satisfies the triangle inequality, and (�1 + �2 + L) is even.

2. Under rotations, ALM
�1�2

transforms as a spin-L object; under
the parity operation n̂ → (−n̂), it transforms as ALM

�1�2
→

(−1)LALM
�1�2

.
3. Symmetry: ALM

�2�1
= ALM

�1�2
.

4. Reality: ALM∗
�1�2

= (−1)MA
L,−M
�1�2

.

To get some intuition for the bipolar power spectrum, we
now consider a series of increasingly complicated models and
compute the bipolar power spectrum in each case.

Our first trivial example will be an isotropic model with power
spectrum C�. In this case, comparison with Equation (A2) shows
that the bipolar power spectrum is given by

ALM
�1�2

= C�1δ�1�2δL0δM0. (A3)

In general, the L = 0 component A00
�� of the bipolar power

spectrum is equal to the angle-averaged power spectrum C�.
(Note that the properties above imply that the only component
of the bipolar power spectrum with L = 0 is A00

�� .) Components
with L > 0 will parameterize deviations from statistical
isotropy.
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Our next example (from Section 8) is an anisotropic model
which is obtained by applying a dipolar “sky” modulation to an
isotropic CMB with power spectrum C�:

T (n̂) =
(

1 +
1∑

M=−1

w1MY1M (n̂)

)
T (n̂)iso, (A4)

where Tiso(n̂) is an isotropic CMB realization. To first order in
the modulation w1M , a short calculation shows that the bipolar
power spectrum is given by

A00
�� = C� (A5)

A1M
�−1,� = A1M

�,�−1 = w1M (C�−1 + C�)

(4π )1/2
(A6)

with all other components zero. The modulation does not change
the sky-averaged power spectrum A00

�� , but the power spectrum
in local patches near the two poles will be different.

A very similar example is the quadrupolar “sky” modulation:

T (n̂) =
(

1 +
2∑

M=−2

w2MY2M (n̂)

)
T (n̂)iso (A7)

with bipolar power spectrum given by

A00
�� = C� (A8)

A2M
�� = w2MC�

π1/2
(A9)

A2M
�−2,� = A2M

�,�−2 = w2M (C�−2 + C�)

(4π )1/2
. (A10)

In the quadrupolar case, the most general anisotropic two-
point function is parameterized by two �-dependent quantities
(A2M

�−2,� and A2M
�� ), in contrast to the dipole case. A short cal-

culation shows that the quadrupolar anisotropy in the power
spectrum is proportional to 2A�−2,� +A��, so that a model which
satisfies A�� ≈ −2A�−2,� has a roughly isotropic power spec-
trum, even though the two-point function contains a component
which transforms under rotations as a quadrupole.

Our final example is the anisotropic early universe model from
Ackerman et al. (2007), in which the initial adiabatic curvature
fluctuation ζ (k) is modulated in Fourier space as follows:

ζ (k) =
[

1 +
2∑

M=−2

w2MY2M (k̂)

]
ζ (k)iso. (A11)

The bipolar power spectrum of this model is

A2M
�1�2

= i�1−�2

(4π )1/2
w2M

∫
2k2 dk

π
Δ�1 (k)Δ�2 (k)P (k), (A12)

where Δ�(k) is the angular CMB transfer function.

A.1.2. Estimators: General Construction

In this appendix, we will construct estimators for the bipolar
power spectrum and related quantities. We will assume that the

bipolar power spectrum of the CMB is a linear combination of
N “template” shapes A1, A2, · · · AN :

ALM
�1�2

=
N∑

i=1

ti(Ai)
LM
�1�2

, (A13)

where the coefficients ti are to be estimated from data. (The
choice of template shapes will be discussed shortly.) We assume
that our template shapes satisfy A00

�� = 0, i.e., the templates
parameterize deviations from isotropy, not changes in the power
spectrum.

A lengthy but straightforward calculation shows that the
minimum-variance estimator t̂i for the template coefficients
which is unbiased (i.e., 〈t̂i〉 = ti) is given by

t̂i[a] = F−1
ij (Ej [a] − Nj ), (A14)

where the quantity Ej [a] is defined by

Ej [a] = 1

2

∑
�1m1�2m2LM

(Aj )LM∗
�1�2

√
(2�1 + 1)(2�2 + 1)(2L + 1)

×
(

�1 �2 L
0 0 0

)(
�1 �2 L
m1 m2 M

)
× (C−1a)∗�1m1

(C−1a)∗�2m2
(A15)

and the matrix Fij and vector Nj are defined by

Fij = Cov(Ei[a], Ej [a]) (A16)

Nj [a] = 〈Ej [a]〉, (A17)

where the covariance and expectation value are taken over
isotropic realizations of the noisy CMB a�m.

The estimator in Equation (A14) can be specialized to mea-
sure different types of statistical isotropy by making different
choices of template shapes (Ai). For example, consider the dipole
modulation, parameterized as in Equation (12) by a three-vector
wi . We assume that multipoles 2 � � � �mod are modulated,
and multipoles � > �mod are unmodulated. The bipolar power
spectrum is given by

ALM
�1�2

=
3∑

i=1

wi(Ai)
LM
�1�2

, (A18)

where the template shapes Ai are defined by

(Ai)
LM
�1�2

=
⎧⎨⎩(

√
4π/3)(C�1 + C�2 )Y ∗

1M (êi) if |�1 − �2| = 1
and �i � �mod

0 otherwise.
(A19)

When specialized to these three template shapes,
Equation (A14) gives the optimal quadratic estimator ŵi for
the three components of the modulation. (A closely related esti-
mator has also been constructed in Dvorkin et al. 2008.) We also
construct an estimator κ1 for the total amplitude of the dipole
modulation, irrespective of its direction, by

κ1 =
∑

i

ŵ2
i . (A20)
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We have used this estimator in Section 8 to assess statistical
significance of the dipole modulation, by comparing the WMAP
value of κ1 to an ensemble of simulations.

The quadrupole modulation can be treated analogously. For
example, in Figure 16 we have shown estimates of A20

�−2,�

and A20
�� in each bin, by taking (10 Nbins) template shapes,

corresponding to the five components of the two bipolar power
spectra in each � bin. As another example, if an optimal estimator
(unbinned in �) for the primordial modulation in Equation (A11)
is desired, one would take five template shapes corresponding
to the five components of w2M , given by Equation (A12).

A.1.3. Relation to Likelihood Formalism

We conclude this appendix by showing how the optimal
estimator is related to the maximum likelihood formalism, for
the dipole and quadrupole cases.

First, consider the dipole modulation. The likelihood function
L[a|w] for the modulation wi , given noisy CMB data a�m, is
given by

L[a|w] = (const.) × Det−1/2[M(w)SM(w) + N ]

× exp

(
−1

2
a†[M(w)SM(w) + N ]−1a

)
, (A21)

where M(w) is the operator which applies the modulation to a
harmonic-space map, defined by

(M(w)a)�m =
∫

d2n̂ Y ∗
�m(n̂) (1 + wi n̂i)

(∑
�′m′

a�′m′Y�′m′(n̂)

)
.

(A22)
We will show that the modulation w which maximizes the

likelihood L[w|a] is equal to value of the optimal quadratic
estimator ŵi defined in the previous appendix, under two
approximations that will be discussed further.

First, suppose that the maximum likelihood modulation is
small, so that the Taylor expansion of (logL) to second order in
wi is an accurate approximation near maximum likelihood. The
Taylor expansion is given by

logL[a|w] ≈ −1

2
Hij [a]wiwj + Gi[a]wi + (const.), (A23)

where we have defined:

Hij [a] = −
(

∂2

∂wi∂wj

)
w=0

(logL[a|w]) (A24)

= −a†C−1MiSMjC
−1a + a†C−1{Mi, S}C−1{Mj, S}C−1a

+ Tr(C−1MiSMj ) − 1

2
Tr(C−1{Mi, S}C−1{Mj, S})

(A25)

Gi[a] = a†C−1MiSC−1a − Tr[C−1MiS] (A26)

and Mi = ∂M(w)/∂wi . Second, we assume that we can ap-
proximate the a�m-dependent quantity Hij [a] by its expectation
value:

Hij [a] ≈ 〈Hij 〉 = 1

2
Tr(C−1{Mi, S}C−1{Mj, S}). (A27)

Under these approximations, the maximum likelihood mod-
ulation is given by

(wi)ML = 〈Hij 〉−1Gj [a]. (A28)

We would like to compare this expression to the optimal
quadratic estimator ŵi defined in Equation (A14), in the special
case where the template shapes are given by Equation (A19).
In this special case, a short calculation shows that 〈Hij 〉 = Fij ,
and Gj [a] = Ej [a] − Nj [a], which implies (wi)ML = ŵi .

We comment briefly on the two approximations made in this
appendix, namely the second-order Taylor approximation in
Equation (A23) and the approximation Hij [a] ≈ 〈Hij 〉. By
the central limit theorem, both approximations are expected to
become accurate in the limit where the number of CMB modes
which contribute to the estimators is large. The analyses in
Sections 8 and 9 have taken wide � bins (either the � range
2 � � � �mod or a series of bins with Δ� = 50) so these
approximations should be very accurate and there should be
little difference in practice between a likelihood estimator and
the optimal quadratic estimator, although we have not tested this
directly. In any case, the optimal quadratic estimator has several
important advantages over a likelihood estimator, as described
in Section 8.
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Smith, K. M., Zahn, O., & Doré, O. 2007, Phys. Rev. D, 76, 043510
Spergel, D. N., et al. 2003, ApJS, 148, 175
Tegmark, M., de Oliveira-Costa, A., & Hamilton, A. J. 2003, Phys. Rev. D, 68,

123523
Tye, S., & Xu, J. 2010, Phys. Lett. B, 683, 326
Urrestilla, J., et al. 2008, J. Cosmol. Astropart. Phys., JCAP07(2008)010
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