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ABSTRACT

The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard
cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP
data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of
galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter
ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for
this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL.
The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the
five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power
spectrum gives a better determination of the third acoustic peak, which results in a better determination of the
redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of
neutrinos,

∑
mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34+0.86

−0.88 (68% CL),
which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation
of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w = −1.10 ± 0.14 (68%
CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of
big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the
first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an
important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year
polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power
spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power
spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved
by 38% to Δα = −1.◦1 ± 1.◦4(statistical) ± 1.◦5(systematic) (68% CL). We report significant detections of the
Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees
well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7
times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations.
We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow
clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude
is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole
Telescope Collaboration.

Key words: cosmic background radiation – cosmology: observations – dark matter – early universe – space
vehicles

1. INTRODUCTION

A simple cosmological model, a flat universe with nearly
scale-invariant adiabatic Gaussian fluctuations, has proven to

∗ WMAP is the result of a partnership between Princeton University and
NASA’s Goddard Space Flight Center. Scientific guidance is provided by the
WMAP Science Team.

be a remarkably good fit to ever improving cosmic microwave
background (CMB) data (Hinshaw et al. 2009; Reichardt et al.
2009; Brown et al. 2009), large-scale structure data (Reid et al.
2010b; Percival et al. 2010), supernova data (Hicken et al.
2009a; Kessler et al. 2009), cluster measurements (Vikhlinin
et al. 2009b; Mantz et al. 2010c), distance measurements (Riess
et al. 2009), and measurements of strong (Suyu et al. 2010;
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Fadely et al. 2010) and weak (Massey et al. 2007; Fu et al.
2008; Schrabback et al. 2010) gravitational lensing effects.

Observations of CMB have been playing an essential role
in testing the model and constraining its basic parameters.
The WMAP satellite (Bennett et al. 2003a, 2003b) has been
measuring temperature and polarization anisotropies of the
CMB over the full sky since 2001. With seven years of
integration, the errors in the temperature spectrum at each
multipole are dominated by cosmic variance (rather than by
noise) up to l ≈ 550, and the signal-to-noise at each multipole
exceeds unity up to l ≈ 900 (Larson et al. 2011). The power
spectrum of primary CMB on smaller angular scales has been
measured by other experiments up to l ≈ 3000 (Reichardt et al.
2009; Brown et al. 2009; Lueker et al. 2010; Fowler et al. 2010).

The polarization data show the most dramatic improvements
over our earlier WMAP results: the temperature–polarization
cross power spectra measured by WMAP at l � 10 are still
dominated by noise, and the errors in the seven-year cross power
spectra have improved by nearly 40% compared to the five-year
cross power spectra. While the error in the power spectrum of
the cosmological E-mode polarization (Seljak & Zaldarriaga
1997; Kamionkowski et al. 1997b) averaged over l = 2–7
is cosmic-variance limited, individual multipoles are not yet
cosmic-variance limited. Moreover, the cosmological B-mode
polarization has not been detected (Nolta et al. 2009; Komatsu
et al. 2009a; Brown et al. 2009; Chiang et al. 2010).

The temperature–polarization (TE and TB) power spectra
offer unique tests of the standard model. The TE spectrum
can be predicted given the cosmological constraints from the
temperature power spectrum, and the TB spectrum is predicted
to vanish in a parity-conserving universe. They also provide a
clear physical picture of how the CMB polarization is created
from quadrupole temperature anisotropy. We show the success
of the standard model in an even more striking way by measuring
this correlation in map space, rather than in harmonic space.

The constraints on the basic six parameters of a flat ΛCDM
model (see Table 1), as well as those on the parameters be-
yond the minimal set (see Table 2), continue to improve with
the seven-year WMAP temperature and polarization data, com-
bined with improved external astrophysical data sets. In this
paper, we shall give an update on the cosmological parameters,
as determined from the latest cosmological data set. Our best es-
timates of the cosmological parameters are presented in the last
columns of Tables 1 and 2 under the name “WMAP+BAO+H0.”
While this is the minimal combination of robust data sets such
that adding other data sets does not significantly improve most
parameters, the other data combinations provide better limits
than WMAP+BAO+H0 in some cases. For example, adding the
small-scale CMB data improves the limit on the primordial he-
lium abundance, Yp (see Table 3 and Section 4.8), the supernova
data are needed to improve limits on properties of dark energy
(see Table 4 and Section 5), and the power spectrum of Lumi-
nous Red Galaxies (LRGs; see Section 3.2.3) improves limits
on properties of neutrinos (see footnotes g, h, and i in Table 2
and Sections 4.6 and 4.7).

The CMB can also be used to probe the abundance as well as
the physics of clusters of galaxies, via the SZ effect (Zel’dovich
& Sunyaev 1969; Sunyaev & Zel’dovich 1972). In this paper,
we present the WMAP measurement of the averaged profile of
SZ effect measured toward the directions of known clusters of
galaxies, and discuss implications of the WMAP measurement
for the very small-scale (l � 3000) power spectrum recently
measured by the South Pole Telescope (SPT; Lueker et al. 2010)

and Atacama Cosmology Telescope (ACT; Fowler et al. 2010)
collaborations.

This paper is one of six papers on the analysis of the
WMAP seven-year data: Jarosik et al. (2011) report on the data
processing, map-making, and systematic error limits; Gold et al.
(2011) on the modeling, understanding, and subtraction of the
temperature and polarized foreground emission; Larson et al.
(2011) on the measurements of the temperature and polarization
power spectra, extensive testing of the parameter estimation
methodology by Monte Carlo simulations, and the cosmological
parameters inferred from the WMAP data alone; Bennett et al.
(2011) on the assessments of statistical significance of various
“anomalies” in the WMAP temperature map reported in the
literature; and Weiland et al. (2011) on WMAP’s measurements
of the brightnesses of planets and various celestial calibrators.

This paper is organized as follows. In Section 2, we present
results from the new method of analyzing the polarization pat-
terns around temperature hot and cold spots. In Section 3, we
briefly summarize new aspects of our analysis of the WMAP
seven-year temperature and polarization data, as well as im-
provements from the five-year data. In Section 4, we present
updates on various cosmological parameters, except for dark
energy. We explore the nature of dark energy in Section 5. In
Section 6, we present limits on primordial non-Gaussianity pa-
rameters fNL. In Section 7, we report detection, characterization,
and interpretation of the SZ effect toward locations of known
clusters of galaxies. We conclude in Section 8.

2. CMB POLARIZATION ON THE MAP

2.1. Motivation

Electron–photon scattering converts quadrupole temperature
anisotropy in the CMB at the decoupling epoch, z = 1090,
into linear polarization (Rees 1968; Basko & Polnarev 1980;
Kaiser 1983; Bond & Efstathiou 1984; Polnarev 1985; Bond &
Efstathiou 1987; Harari & Zaldarriaga 1993). This produces a
correlation between the temperature pattern and the polarization
pattern (Coulson et al. 1994; Crittenden et al. 1995). Different
mechanisms for generating fluctuations produce distinctive
correlated patterns in temperature and polarization:

1. Adiabatic scalar fluctuations predict a radial polarization
pattern around temperature cold spots and a tangential
pattern around temperature hot spots on angular scales
greater than the horizon size at the decoupling epoch, �2◦.
On angular scales smaller than the sound horizon size at
the decoupling epoch, both radial and tangential patterns
are formed around both hot and cold spots, as the acoustic
oscillation of the CMB modulates the polarization pattern
(Coulson et al. 1994). As we have not seen any evidence
for non-adiabatic fluctuations (Komatsu et al. 2009a, see
Section 4.4 for the seven-year limits), in this section we
shall assume that fluctuations are purely adiabatic.

2. Tensor fluctuations predict the opposite pattern: the tem-
perature cold spots are surrounded by a tangential polar-
ization pattern, while the hot spots are surrounded by a
radial pattern (Crittenden et al. 1995). Since there is no
acoustic oscillation for tensor modes, there is no modula-
tion of polarization patterns around temperature spots on
small angular scales. We do not expect this contribution to
be visible in the WMAP data, given the noise level.

3. Defect models predict that there should be minimal cor-
relations between temperature and polarization on 2◦ �
θ � 10◦ (Seljak et al. 1997). The detection of large-scale
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Table 1
Summary of the Cosmological Parameters of ΛCDM Modela

Class Parameter WMAP Seven-year MLb WMAP+BAO+H0 ML WMAP Seven-year Meanc WMAP+BAO+H0 Mean

Primary 100Ωbh
2 2.227 2.253 2.249+0.056

−0.057 2.255 ± 0.054
Ωch

2 0.1116 0.1122 0.1120 ± 0.0056 0.1126 ± 0.0036
ΩΛ 0.729 0.728 0.727+0.030

−0.029 0.725 ± 0.016
ns 0.966 0.967 0.967 ± 0.014 0.968 ± 0.012
τ 0.085 0.085 0.088 ± 0.015 0.088 ± 0.014

Δ2
R(k0)d 2.42 × 10−9 2.42 × 10−9 (2.43 ± 0.11) × 10−9 (2.430 ± 0.091) × 10−9

Derived σ8 0.809 0.810 0.811+0.030
−0.031 0.816 ± 0.024

H0 70.3 km s−1 Mpc−1 70.4 km s−1 Mpc−1 70.4 ± 2.5 km s−1 Mpc−1 70.2 ± 1.4 km s−1 Mpc−1

Ωb 0.0451 0.0455 0.0455 ± 0.0028 0.0458 ± 0.0016
Ωc 0.226 0.226 0.228 ± 0.027 0.229 ± 0.015

Ωmh2 0.1338 0.1347 0.1345+0.0056
−0.0055 0.1352 ± 0.0036

zreion
e 10.4 10.3 10.6 ± 1.2 10.6 ± 1.2

t0f 13.79 Gyr 13.76 Gyr 13.77 ± 0.13 Gyr 13.76 ± 0.11 Gyr

Notes.
a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All the other parameters in the other tables
are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood code, unless stated otherwise. The difference is small. See Appendix A for
comparison.
b Larson et al. (2011). “ML” refers to the maximum likelihood parameters.
c Larson et al. (2011). “Mean” refers to the mean of the posterior distribution of each parameter. The quoted errors show the 68% confidence levels (CLs).
d Δ2

R(k) = k3PR(k)/(2π2) and k0 = 0.002 Mpc−1.
e “Redshift of reionization,” if the universe was reionized instantaneously from the neutral state to the fully ionized state at zreion. Note that these values are
somewhat different from those in Table 1 of Komatsu et al. (2009a), largely because of the changes in the treatment of reionization history in the Boltzmann
code CAMB (Lewis 2008).
f The present-day age of the universe.

Table 2
Summary of the 95% Confidence Limits on Deviations From the Simple (Flat, Gaussian, Adiabatic, Power-law) ΛCDM Model Except for Dark Energy Parameters

Section Name Case WMAP Seven-year WMAP+BAO+SNa WMAP+BAO+H0

Section 4.1 Grav. waveb No running ind. r < 0.36c r < 0.20 r < 0.24
Section 4.2 Running index No grav. wave −0.084 < dns/d ln k < 0.020c −0.065 < dns/d ln k < 0.010 −0.061 < dns/d ln k < 0.017
Section 4.3 Curvature w = −1 N/A −0.0178 < Ωk < 0.0063 −0.0133 < Ωk < 0.0084
Section 4.4 Adiabaticity Axion α0 < 0.13c α0 < 0.064 α0 < 0.077

Curvaton α−1 < 0.011c α−1 < 0.0037 α−1 < 0.0047
Section 4.5 Parity violation Chern–Simonsd −5.◦0 < Δα < 2.◦8e N/A N/A
Section 4.6 Neutrino massf w = −1

∑
mν < 1.3eVc ∑

mν < 0.71eV
∑

mν < 0.58eVg

w �= −1
∑

mν < 1.4eVc ∑
mν < 0.91eV

∑
mν < 1.3eVh

Section 4.7 Relativistic species w = −1 Neff > 2.7c N/A 4.34+0.86
−0.88 (68% CL)i

Section 6 Gaussianityj Local −10 < f local
NL < 74k N/A N/A

Equilateral −214 < f
equil
NL < 266 N/A N/A

Orthogonal −410 < f
orthog
NL < 6 N/A N/A

Notes.
a “SN” denotes the “Constitution” sample of Type Ia supernovae compiled by Hicken et al. (2009a), which is an extension of the “Union” sample (Kowalski et al. 2008)
that we used for the five-year “WMAP+BAO+SN” parameters presented in Komatsu et al. (2009a). Systematic errors in the supernova data are not included. While the
parameters in this column can be compared directly to the five-year WMAP+BAO+SN parameters, they may not be as robust as the “WMAP+BAO+H0” parameters,
as the other compilations of the supernova data do not give the same answers (Hicken et al. 2009a; Kessler et al. 2009). See Section 3.2.4for more discussion. The SN
data will be used to put limits on dark energy properties. See Section 5 and Table 4.
b In the form of the tensor-to-scalar ratio, r, at k = 0.002 Mpc−1.
c Larson et al. (2011).
d For an interaction of the form given by [φ(t)/M]FαβF̃ αβ , the polarization rotation angle is Δα = M−1

∫
dt
a

φ̇.
e The 68% CL limit is Δα = −1.◦1 ± 1.◦4(stat.) ± 1.◦5(syst.), where the first error is statistical and the second error is systematic.
f ∑mν = 94(Ωνh

2)eV.
g For WMAP+LRG+H0,

∑
mν < 0.44eV.

h For WMAP+LRG+H0,
∑

mν < 0.71eV.
i The 95% limit is 2.7 < Neff < 6.2. For WMAP+LRG+H0, Neff = 4.25 ± 0.80 (68%) and 2.8 < Neff < 5.9 (95%).
j V+W map masked by the KQ75y7 mask. The Galactic foreground templates are marginalized over.
k When combined with the limit on f local

NL from SDSS, −29 < f local
NL < 70 (Slosar et al. 2008), we find −5 < f local

NL < 59.

temperature polarization fluctuations rules out any causal
models as the primary mechanism for generating the CMB
fluctuations (Spergel & Zaldarriaga 1997). This implies that

the fluctuations were either generated during an accelerat-
ing phase in the early universe or were present at the time
of the initial singularity.
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Table 3
Primordial Helium Abundancea

WMAP Only WMAP+ACBAR+QUaD

Yp <0.51 (95% CL) Yp = 0.326 ± 0.075 (68% CL)b

Notes.
a See Section 4.8.
b The 95% CL limit is 0.16 < Yp < 0.46. For WMAP+ACBAR+
QUaD+LRG+H0, YHe = 0.349 ± 0.064 (68% CL) and 0.20 < Yp < 0.46
(95% CL).

This section presents the first direct measurement of the pre-
dicted pattern of adiabatic scalar fluctuations in CMB polariza-
tion maps. We stack maps of Stokes Q and U around temperature
hot and cold spots to show the expected polarization pattern at
the statistical significance level of 8σ . While we have detected
the TE correlations in the first year data (Kogut et al. 2003), we
present here the direct real space pattern around hot and cold
spots. In Section 2.5, we discuss the relationship between the
two measurements.

2.2. Measuring Peak–Polarization Correlation

We first identify temperature hot (or cold) spots, and then
stack the polarization data (i.e., Stokes Q and U) on the locations
of the spots. As we shall show below, the resulting polarization
data are equivalent to the temperature peak–polarization corre-
lation function which is similar to, but different in an important
way from, the temperature–polarization correlation function.

2.2.1. Qr and Ur: Transformed Stokes Parameters

Our definitions of Stokes Q and U follow that of Kogut et al.
(2003): the polarization that is parallel to the Galactic meridian
is Q > 0 and U = 0. Starting from this, the polarization that
is rotated by 45◦ from east to west (clockwise, as seen by an
observer on Earth looking up at the sky) has Q = 0 and U > 0,
that perpendicular to the Galactic meridian has Q < 0 and
U = 0, and that rotated further by 45◦ from east to west has
Q = 0 and U < 0. With one more rotation we go back to Q > 0
and U = 0. We show this in Figure 1.

As the predicted polarization pattern around temperature
spots is either radial or tangential, we find it most convenient to
work with Qr and Ur first introduced by Kamionkowski et al.
(1997b):

Qr (θ) = −Q(θ ) cos(2φ) − U (θ) sin(2φ), (1)

N

E

Q<0,U=0

Q=0,U<0

Q=0,U>0

Q>0,U=0

θθ

φφ

Figure 1. Coordinate system for Stokes Q and U. We use Galactic coordinates
with north up and east left. In this example, Qr is always negative, and Ur is
always zero. When Qr > 0 and Ur = 0, the polarization pattern is radial.

Ur (θ ) = Q(θ) sin(2φ) − U (θ) cos(2φ). (2)

These transformed Stokes parameters are defined with respect
to the new coordinate system that is rotated by φ, and thus they
are defined with respect to the line connecting the temperature
spot at the center of the coordinate and the polarization at an
angular distance θ from the center (also see Figure 1). Note
that we have used the small-angle (flat-sky) approximation for
simplicity of the algebra. This approximation is justified as we
are interested in relatively small angular scales, θ < 5◦.

The above definition of Qr is equivalent to the so-called
tangential shear statistic used by the weak gravitational lensing
community. By following what has been already done for the
tangential shear, we can find the necessary formulae for Qr and
Ur. Specifically, we shall follow the derivations given in Jeong
et al. (2009).

With the small-angle approximation, Q and U are related
to the E- and B-mode polarization in Fourier space (Seljak &
Zaldarriaga 1997; Kamionkowski et al. 1997a) as

−Q(θ ) =
∫

d2l
(2π )2

[El cos(2ϕ) − Bl sin(2ϕ)] eil·θ , (3)

−U (θ ) =
∫

d2l
(2π )2

[El sin(2ϕ) + Bl cos(2ϕ)] eil·θ , (4)

where ϕ is the angle between l and the line of Galactic
latitude, l = (l cos ϕ, l sin ϕ). Note that we have included

Table 4
Summary of the 68% Limits on Dark Energy Properties from WMAP Combined with Other Data Sets

Section Curvature Parameter +BAO+H0 +BAO+H0+DΔt
a +BAO+SNb

Section 5.1 Ωk = 0 Constant w −1.10 ± 0.14 −1.08 ± 0.13 −0.980 ± 0.053
Section 5.2 Ωk �= 0 Constant w −1.44 ± 0.27 −1.39 ± 0.25 −0.999+0.057

−0.056
Ωk −0.0125+0.0064

−0.0067 −0.0111+0.0060
−0.0063 −0.0057+0.0067

−0.0068

+H0+SN +BAO+H0+SN +BAO+H0+DΔt +SN

Section 5.3 Ωk = 0 w0 −0.83 ± 0.16 −0.93 ± 0.13 −0.93 ± 0.12
wa −0.80+0.84

−0.83 −0.41+0.72
−0.71 −0.38+0.66

−0.65

Notes.
a “DΔt ” denotes the time-delay distance to the lens system B1608+656 at z = 0.63 measured by Suyu et al. (2010). See Section 3.2.5
for details.
b “SN” denotes the “Constitution” sample of Type Ia supernovae compiled by Hicken et al. (2009a), which is an extension of the
“Union” sample (Kowalski et al. 2008) that we used for the five-year “WMAP+BAO+SN” parameters presented in Komatsu et al.
(2009a). Systematic errors in the supernova data are not included.
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Figure 2. Temperature–polarization cross correlation with various smoothing functions. Left: the TE power spectrum with no smoothing is shown in the black solid
line. For the other curves, the temperature is always smoothed with a 0.◦5 (FWHM) Gaussian, whereas the polarization is smoothed with either the same Gaussian
(black dashed), Q-band beam (blue solid), V-band beam (purple solid), or W-band beam (red dashed). Right: the corresponding spatial temperature–Qr correlation
functions. The vertical dotted lines indicate (from left to right): the acoustic scale, 2×the acoustic scale, and 2×the horizon size, all evaluated at the decoupling epoch.

the negative signs on the left-hand side because our sign
convention for the Stokes parameters is opposite of that used in
Equation (38) of Zaldarriaga & Seljak (1997). The transformed
Stokes parameters are given by

−Qr (θ ) = −
∫

d2l
(2π )2

{El cos[2(φ − ϕ)]

+Bl sin[2(φ − ϕ)]} eil·θ , (5)

−Ur (θ ) =
∫

d2l
(2π )2

{El sin[2(φ − ϕ)]

−Bl cos[2(φ − ϕ)]} eil·θ . (6)

The stacking of Qr and Ur at the locations of temperature
peaks can be written as

〈Qr〉(θ ) = 1

Npk

∫
d2n̂M(n̂)〈npk(n̂)Qr (n̂ + θ̂ )〉, (7)

〈Ur〉(θ) = 1

Npk

∫
d2n̂M(n̂)〈npk(n̂)Ur (n̂ + θ̂ )〉, (8)

where the angle bracket, 〈. . .〉, denotes the average over the
locations of peaks, npk(n̂) is the surface number density of peaks
(of the temperature fluctuation) at the location n̂, Npk is the total
number of temperature peaks used in the stacking analysis, and
M(n̂) is equal to 0 at the masked pixels and 1 otherwise. Defining
the density contrast of peaks, δpk ≡ npk/n̄pk − 1, we find

〈Qr〉(θ ) = 1

fsky

∫
d2n̂
4π

M(n̂)〈δpk(n̂)Qr (n̂ + θ̂ )〉, (9)

〈Ur〉(θ ) = 1

fsky

∫
d2n̂
4π

M(n̂)〈δpk(n̂)Ur (n̂ + θ̂)〉, (10)

where fsky ≡ ∫
M(n̂)d2n̂/(4π ) is the fraction of sky outside of

the mask, and we have used Npk = 4πfskyn̄pk.
In Appendix B, we use the statistics of peaks of Gaussian

random fields to relate 〈Qr〉 to the temperature–E-mode polar-
ization cross power spectrum CTE

l , 〈Ur〉 to the temperature–B-
mode polarization cross power spectrum CTB

l , and the stacked
temperature profile, 〈T 〉, to the temperature power spectrum
CTT

l . We find

〈Qr〉(θ ) = −
∫

ldl

2π
WT

l WP
l (b̄ν + b̄ζ l

2)CTE
l J2(lθ ), (11)

〈Ur〉(θ ) = −
∫

ldl

2π
WT

l WP
l (b̄ν + b̄ζ l

2)CTB
l J2(lθ ), (12)

〈T 〉(θ ) =
∫

ldl

2π
(WT

l )2(b̄ν + b̄ζ l
2)CTT

l J0(lθ ), (13)

where WT
l and WP

l are the harmonic transform of window
functions, which are a combination of the experimental beam,
pixel window, and any other additional smoothing applied to the
temperature and polarization data, respectively, and b̄ν + b̄ζ l

2 is
the “scale-dependent bias” of peaks found by Desjacques (2008)
averaged over peaks. See Appendix B for details.

2.2.2. Prediction and Physical Interpretation

What do 〈Qr〉(θ ) and 〈Ur〉(θ ) look like? The Qr map is
expected to be non-zero for a cosmological signal, while the Ur
map is expected to vanish in a parity-conserving universe unless
some systematic error rotates the polarization plane uniformly.

To understand the shape of Qr as well as its physical
implications, let us begin by showing the smoothed CTE

l spectra
and the corresponding temperature–Qr correlation functions,
CT Qr (θ ), in Figure 2. (Note that CT Qr and CT Ur can be
computed from Equations (11) and (12), respectively, with
bν = 1 and bζ = 0.) This shows three distinct effects causing
polarization of CMB (see Hu & White 1997, for a pedagogical
review):

1. θ � 2θhorizon, where θhorizon is the angular size of the
radius of the horizon size at the decoupling epoch. Using
the comoving horizon size of rhorizon = 0.286 Gpc and
the comoving angular diameter distance to the decoupling
epoch of dA = 14 Gpc as derived from the WMAP data,
we find θhorizon = 1.◦2. As this scale is so much greater than
the sound horizon size (see below), only gravity affects the
physics. Suppose that there is a Newtonian gravitational
potential, ΦN , at the center of a perturbation, θ = 0. If it
is overdense at the center, ΦN < 0, and thus it is a cold
spot according to the Sachs–Wolfe formula (Sachs & Wolfe
1967), ΔT/T = ΦN/3 < 0. The photon fluid in this region
will flow into the gravitational potential well, creating
a converging flow. Such a flow creates the quadrupole
temperature anisotropy around an electron at θ � 2θhorizon,
producing polarization that is radial, i.e., Qr > 0. Since
the temperature is negative, we obtain 〈T Qr〉 < 0, i.e.,
anti-correlation (Coulson et al. 1994). On the other hand,
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Figure 3. Predicted temperature peak–polarization cross correlation, as measured by the stacked profile of the transformed Stokes Qr , computed from Equation (11)
for various values of the threshold peak heights. The temperature is always smoothed with a 0.◦5 (FWHM) Gaussian, whereas the polarization is smoothed with either
the same Gaussian (black dashed), Q-band beam (blue solid), V-band beam (purple solid), or W-band beam (red dashed). Top left: all temperature hot spots are stacked.
Top right: spots greater than 1σ are stacked. Bottom left: spots greater than 2σ are stacked. Bottom right: spots greater than 3σ are stacked. The light gray lines show
the average of the measurements from noiseless simulations with a Gaussian smoothing of 0.◦5 FWHM. The agreement is excellent.

if it is overdense at the center, then the photon fluid
moves outward, producing polarization that is tangential,
i.e., Qr < 0. Since the temperature is positive, we obtain
〈T Qr〉 < 0, i.e., anti-correlation. The anti-correlation at
θ � 2θhorizon is a smoking gun for the presence of super-
horizon fluctuations at the decoupling epoch (Spergel &
Zaldarriaga 1997), which has been confirmed by the WMAP
data (Peiris et al. 2003).

2. θ 
 2θA, where θA is the angular size of the radius of
the sound horizon size at the decoupling epoch. Using
the comoving sound horizon size of rs = 0.147 Gpc
and dA = 14 Gpc as derived from the WMAP data, we
find θA = 0.◦6. Again, consider a potential well with
ΦN < 0 at the center. As the photon fluid flows into
the well, it compresses, increasing the temperature of the
photons. Whether or not this increase can reverse the sign
of the temperature fluctuation (from negative to positive)
depends on whether the initial perturbation was adiabatic.
If it was adiabatic, then the temperature would reverse
sign at θ � 2θhorizon. Note that the photon fluid is still
flowing in, and thus the polarization direction is radial,
Qr > 0. However, now that the temperature is positive, the
correlation reverses sign: 〈T Qr〉 > 0. A similar argument
(with the opposite sign) can be used to show the same
result, 〈T Qr〉 > 0, for ΦN > 0 at the center. As an aside,
the temperature reverses sign on smaller angular scales for
isocurvature fluctuations.

3. θ 
 θA. Again, consider a potential well with ΦN < 0 at
the center. At θ � 2θA, the pressure of the photon fluid is so
great that it can slow down the flow of the fluid. Eventually,
at θ ∼ θA, the pressure becomes large enough to reverse

the direction of the flow (i.e., the photon fluid expands).
As a result the polarization direction becomes tangential,
Qr < 0; however, as the temperature is still positive, the
correlation reverses sign again: 〈T Qr〉 < 0.

On even smaller scales, the correlation reverses sign again
(see Figure 2 of Coulson et al. 1994) because the temperature
gets too cold due to expansion. We do not see this effect in
Figure 2 because of the smoothing. Lastly, there is no correlation
between T and Qr at θ = 0 because of symmetry.

These features are essentially preserved in the peak–
polarization correlation as measured by the stacked polariza-
tion profiles. We show them in Figure 3 for various values of
the threshold peak heights. The important difference is that,
thanks to the scale-dependent bias ∝ l2, the small-scale trough
at θ 
 θA is enhanced, making it easier to observe. On the
other hand, the large-scale anti-correlation is suppressed. We
can therefore conclude that, with the WMAP data, we should
be able to measure the compression phase at θ 
 2θA = 1.◦2,
as well as the reversal phase at θ 
 θA = 0.◦6. We also show
the profiles calculated from numerical simulations (gray solid
lines). The agreement with Equation (11) is excellent. We also
show the predicted profiles of the stacked temperature data in
Figure 4.

2.3. Analysis Method

2.3.1. Temperature Data

We use the foreground-reduced V + W temperature map at the
HEALPix resolution of Nside = 512 to find temperature peaks.
First, we smooth the foreground-reduced temperature maps in
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Figure 4. Predicted temperature peak–temperature correlation, as measured by the stacked temperature profile, computed from Equation (13) for various values of the
threshold peak heights. The choices of the smoothing functions and the threshold peak heights are the same as in Figure 3.

six differencing assemblies (DAs) (V1, V2, W1, W2, W3, W4)
to a common resolution of 0.◦5 (FWHM) using

ΔT (n̂) =
∑
lm

alm

WT
l

bl

Ylm(n̂), (14)

where bl is the appropriate beam transfer function for
each DA (Jarosik et al. 2011), and WT

l = pl exp[−l(l +
1)σ 2

FWHM/(16 ln 2)] is the pixel window function for Nside =
512, pl, times the spherical harmonic transform of a Gaussian
with σFWHM = 0.◦5. We then co-add the foreground-reduced
V- and W-band maps with the inverse noise variance weighting,
and remove the monopole from the region outside of the mask
(which is already negligibly small, 1.07 × 10−4μK). For the
mask, we combine the new seven-year KQ85 mask, KQ85y7
(defined in Gold et al. 2011; also see Section 3.1) and P06
masks, leaving 68.7% of the sky available for the analysis.

We find the locations of minima and maxima using the
software “ hotspot ” in the HEALPix package (Gorski et al.
2005). Over the full sky (without the mask), we find 20953
maxima and 20974 minima. As the maxima and minima found
by hotspot still contain negative and positive peaks, respectively,
we further select the “hot spots” by removing all negative peaks
from maxima, and the “cold spots” by removing all positive
peaks from minima. This procedure corresponds to setting the
threshold peak height to νt = 0; thus, our prediction for 〈Qr〉(θ )
is the top left panel of Figure 3.

Outside of the mask, we find 12,387 hot spots and 12,628
cold spots. The rms temperature fluctuation is σ0 = 83.9μK.
What does the theory predict? Using Equation (B15) with the
power spectrum CTT

l = (CTT,signal
l p2

l + NTT
l /b2

l ) exp[−l(l +
1) σ 2

FWHM/(8 ln 2)] where NTT
l = 7.47 × 10−3μK2sr is the

noise bias of the V+W map before Gaussian smoothing
and C

TT,signal
l is the five-year best-fitting power-law ΛCDM

temperature power spectrum, we find 4πfskyn̄pk = 12330
for νt = 0 and fsky = 0.687; thus, the number of ob-

served hot and cold spots is consistent with the predicted
number.15

2.3.2. Polarization Data

As for the polarization data, we use the raw (i.e., without
foreground cleaning) polarization maps in V and W bands. We
have checked that the cleaned maps give similar results with
slightly larger error bars, which is consistent with the excess
noise introduced by the template foreground cleaning procedure
(Page et al. 2007; Gold et al. 2009, 2011). As we are focused
on relatively small angular scales, θ � 2◦, in this analysis,
the results presented in this section would not be affected by
a potential systematic effect causing an excess power in the
W-band polarization data on large angular scales, l � 10.
However, note that this excess power could just be a statistical
fluctuation (Jarosik et al. 2011). We form two sets of the data: (1)
V, W, and V + W band maps smoothed to a common resolution of
0.◦5, and (2) V, W, and V + W band maps without any additional
smoothing. The first set is used only for visualization, whereas
the second set is used for the χ2 analysis.

We extract a square region of 5◦×5◦ around each temperature
hot or cold spot. We then co-add the extracted T images with
uniform weighting, and Q and U images with the inverse noise
variance weighting. We have eliminated the pixels masked by
KQ85y7 and P06 from each 5◦ × 5◦ region when we co-add
images, and thus the resulting stacked image has the smallest
noise at the center (because the masked pixels usually appear
near the edge of each image). We also accumulate the inverse
noise variance per pixel as we co-add Q and U maps. The co-
added inverse noise variance maps of Q and U will be used to
estimate the errors of the stacked images of Q and U per pixel,
which will then be used for the χ2 analysis.

15 Note that the predicted number is 4πfskyn̄pk = 10549 if we ignore the noise
bias; thus, even with a Gaussian smoothing, the contribution from noise is not
negligible.
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Figure 5. Stacked images of temperature and polarization data around temperature cold spots. Each panel shows a 5◦ × 5◦ region with north up and east left. Both
the temperature and polarization data have been smoothed to a common resolution of 0.◦5. Top: simulated images with no instrumental noise. From left to right: the
stacked temperature, Stokes Q, Stokes U, and transformed Stokes Qr (see Equation (1)) overlaid with the polarization directions. Middle: WMAP seven-year V + W
data. In the observed map of Qr , the compression phase at 1.◦2 and the reversal phase at 0.◦6 are clearly visible. Bottom: null tests. From left to right: the stacked Qr
from the sum map and from the difference map (V − W)/2, the stacked Ur from the sum map and from the difference map. The latter three maps are all consistent with
noise. Note that Ur , which probes the TB correlation (see Equation (12)), is expected to vanish in a parity-conserving universe.

We find that the stacked images of Q and U have constant
offsets, which is not surprising. Since these affect our determi-
nation of polarization directions, we remove monopoles from
the stacked images of Q and U. The size of each pixel in the
stacked image is 0.◦2, and the number of pixels is 252 = 625.

Finally, we compute Qr and Ur from the stacked images of
Stokes Q and U using Equations (1) and (2), respectively.

2.4. Results

In Figures 5 and 6, we show the stacked images of T, Q, U, Qr,
and Ur around temperature cold spots and hot spots, respectively.
The peak values of the stacked temperature profiles agree with
the predictions (see the dashed line in the top left panel of
Figure 4). A dip in temperature (for hot spots; a bump for cold
spots) at θ 
 1◦ is clearly visible in the data. While the Stokes Q

and U measured from the data exhibit the expected features, they
are still fairly noisy. The most striking images are the stacked Qr
(and T). The predicted features are clearly visible, particularly
the compression phase at 1.◦2 and the reversal phase at 0.◦6 in
Qr: the polarization directions around temperature cold spots are
radial at θ 
 0.◦6 and tangential at θ 
 1.◦2, and those around
temperature hot spots show the opposite patterns, as predicted.

How significant are these features? Before performing the
quantitative χ2 analysis, we first compare Qr and Ur using both
the (V + W)/2 sum map (here, V + W refers to the inverse noise
variance weighted average) as well as the (V − W)/2 difference
map (bottom panels of Figures 5 and 6). The Qr map (which
is expected to be non-zero for a cosmological signal) shows
clear differences between the sum and difference maps, while
the Ur map (which is expected to vanish in a parity-conserving
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Figure 6. Same as Figure 5 but for temperature hot spots.

universe unless some systematic error rotates the polarization
plane uniformly) is consistent with zero in both the sum and
difference maps.

Next, we perform the standard χ2 analysis. We summarize
the results in Table 5. We report the values of χ2 measured
with respect to zero signal in the second column, where the
number of degrees of freedom (dof) is 625. For each sum map
combination, we fit the data to the predicted signal to find the
best-fitting amplitude.

The largest improvement in χ2 is observed for Qr, as ex-
pected from the visual inspection of Figures 5 and 6: we find
0.82 ± 0.15 and 0.90±0.15 for the stacking of Qr around hot and
cold spots, respectively. The improvement in χ2 is Δχ2 = −29.2
and −36.2, respectively; thus, we detect the expected polariza-
tion patterns around hot and cold spots at the level of 5.4σ and
6σ , respectively. The combined significance exceeds 8σ .

On the other hand, we do not find any evidence for Ur. The
χ2 values with respect to zero signal per dof are 629.2/625
(hot spots) and 657.8/625 (cold spots), and the probabilities of

finding larger values of χ2 are 44.5% and 18%, respectively. But,
can we learn anything about cosmology from this result? While
the standard model predicts CTB

l = 0 and hence 〈Ur〉 = 0,
models in which the global parity symmetry is violated can
create CTB

l = sin(2Δα)CTE
l (Lue et al. 1999; Carroll 1998;

Feng et al. 2005). Therefore, we fit the measured Ur to the
predicted Qr, finding a null result: sin(2Δα) = −0.13 ± 0.15
and 0.20 ± 0.15 (68% CL), or equivalently Δα = −3.◦7 ± 4.◦3
and 5.◦7 ± 4.◦3 (68% CL) for hot and cold spots, respectively.
Averaging these numbers, we obtain Δα = 1.◦0 ± 3.◦0 (68%
CL), which is consistent with (although not as stringent as) the
limit we find from the full analysis presented in Section 4.5.
Finally, all the χ2 values measured from the difference maps
are consistent with a null signal.

How do these results compare to the full analysis of the TE
power spectrum? By fitting the seven-year CTE

l data to the same
power spectrum used above (five-year best-fitting power-law
ΛCDM model from l = 24 to 800, i.e., dof=777), we find the
best-fitting amplitude of 0.999 ± 0.048 and Δχ2 = −434.5,
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Table 5
Statistics of the Results from the Stacked Polarization Analysis

Data Combinationa χ2b Best-fitting Amplitudec Δχ2d

Hot, Q, V + W 661.9 0.57 ± 0.21 −7.3
Hot, U, V + W 661.1 1.07 ± 0.21 −24.7
Hot, Qr , V + W 694.2 0.82 ± 0.15 −29.2
Hot, Ur , V + W 629.2 −0.13 ± 0.15 −0.18

Cold, Q, V + W 668.3 0.89 ± 0.21 −18.2
Cold, U, V + W 682.7 0.86 ± 0.21 −16.7
Cold, Qr , V + W 682.2 0.90 ± 0.15 −36.2
Cold, Ur , V + W 657.8 0.20 ± 0.15 −0.46

Hot, Q, V − W 559.8
Hot, U, V − W 629.8
Hot, Qr , V − W 662.2
Hot, Ur , V − W 567.0

Cold, Q, V − W 584.0
Cold, U, V − W 668.2
Cold, Qr , V − W 616.0
Cold, Ur , V − W 636.9

Notes.
a “Hot” and “Cold” denote the stacking around temperature hot spots and cold
spots, respectively.
b Computed with respect to zero signal. The number of degrees of freedom is
252 = 625.
c Best-fitting amplitudes for the corresponding theoretical predictions. The
quoted errors show the 68% confidence level. Note that, for Ur , we used the
prediction for Qr; thus, the fitted amplitude may be interpreted as sin(2Δα),
where Δα is the rotation of the polarization plane due to, e.g., violation of
global parity symmetry.
d Difference between the second column and χ2 after removing the model with
the best-fitting amplitude given in the third column.

i.e., a 21σ detection of the TE signal. This is reasonable, as
we used only the V- and W-band data for the stacking analysis,
while we used also the Q-band data for measuring the TE power
spectrum; 〈Qr〉(θ ) is insensitive to information on θ � 2◦ (see
top left panel of Figure 3); and the smoothing suppresses the
power at l � 400 (see left panel of Figure 2). Nevertheless, there
is probably a way to extract more information from 〈Qr〉(θ ) by,
for example, combining data at different threshold peak heights
and smoothing scales.

2.5. Discussion

If the temperature fluctuations of the CMB obey Gaussian
statistics and global parity symmetry is respected on cos-
mological scales, the temperature–E-mode polarization cross
power spectrum, CTE

l , contains all the information about the
temperature–polarization correlation. In this sense, the stacked
polarization images do not add any new information.

The detection and measurement of the temperature–E mode
polarization cross-correlation power spectrum, CTE

l (Kovac et al.
2002; Kogut et al. 2003; Spergel et al. 2003), can be regarded as
equivalent to finding the predicted polarization patterns around
hot and cold spots. While we have shown that one can write the
stacked polarization profile around temperature spots in terms
of an integral of CTE

l , the formal equivalence between this new
method and CTE

l is valid only when temperature fluctuations
obey Gaussian statistics, as the stacked Q and U maps measure
correlations between temperature peaks and polarization. So
far there is no convincing evidence for non-Gaussianity in the
temperature fluctuations observed by WMAP (Komatsu et al.
2003, see Section 6 for the seven-year limits on primordial non-

Gaussianity, and Bennett et al. 2011 for discussion on other
non-Gaussian features).

Nevertheless, they provide striking confirmation of our un-
derstanding of the physics at the decoupling epoch in the form
of radial and tangential polarization patterns at two characteris-
tic angular scales that are important for the physics of acoustic
oscillation: the compression phase at θ = 2θA and the reversal
phase at θ = θA.

Also, this analysis does not require any analysis in harmonic
space, nor decomposition to E and B modes. The analysis
is so straightforward and intuitive that the method presented
here would also be useful for null tests and systematic error
checks. The stacked image of Ur should be particularly useful
for systematic error checks.

Any experiments that measure both temperature and polar-
ization should be able to produce the stacked images such as
presented in Figures 5 and 6.

3. SUMMARY OF SEVEN-YEAR PARAMETER
ESTIMATION

3.1. Improvements from the Five-year Analysis

Foreground mask. The seven-year temperature analysis
masks, KQ85y7 and KQ75y7, have been slightly enlarged
to mask the regions that have excess foreground emission,
particularly in the H ii regions Gum and Ophiuchus, identified
in the difference between foreground-reduced maps at different
frequencies. As a result, the new KQ85y7 and KQ75y7 masks
eliminate an additional 3.4% and 1.0% of the sky, leaving
78.27% and 70.61% of the sky for the cosmological analyses,
respectively. See Section 2.1 of Gold et al. (2011) for details.
There is no change in the polarization P06 mask (see Section 4.2
of Page et al. 2007, for definition of this mask), which leaves
73.28% of the sky.

Point sources and the SZ effect. We continue to marginalize
over a contribution from unresolved point sources, assuming
that the antenna temperature of point sources declines with
frequency as ν−2.09 (see Equation (5) of Nolta et al. 2009).
The five-year estimate of the power spectrum from unresolved
point sources in Q band in units of antenna temperature, Aps,
was 103Aps = 11±1μK2sr (Nolta et al. 2009), and we used this
value and the error bar to marginalize over the power spectrum
of residual point sources in the seven-year parameter estimation.
The subsequent analysis showed that the seven-year estimate of
the power spectrum is 103Aps = 9.0 ± 0.7μK2sr (Larson et al.
2011), which is somewhat lower than the five-year value because
more sources are resolved by WMAP and included in the source
mask. The difference in the diffuse mask (between KQ85y5
and KQ85y7) does not affect the value of Aps very much: we
find 9.3 instead of 9.0 if we use the five-year diffuse mask and
the seven-year source mask. The source power spectrum is sub-
dominant in the total power. We have checked that the parameter
results are insensitive to the difference between the five-year and
seven-year residual source estimates.

We continue to marginalize over a contribution from the
SZ effect using the same template as for the 3- and five-year
analyses (Komatsu & Seljak 2002). We assume a uniform prior
on the amplitude of this template as 0 < ASZ < 2, which is
now justified by the latest limits from the SPT collaboration,
ASZ = 0.37 ± 0.17 (68% CL; Lueker et al. 2010), and the ACT
Collaboration, ASZ < 1.63 (95% CL; Fowler et al. 2010).

High-l temperature and polarization. We increase the
multipole range of the power spectra used for the cosmological
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parameter estimation from 2–1000 to 2–1200 for the TT power
spectrum, and from 2–450 to 2–800 for the TE power spectrum.
We use the seven-year V- and W-band maps (Jarosik et al. 2011)
to measure the high-l TT power spectrum in l = 33–1200.
While we used only Q- and V-band maps to measure the high-l
TE and TB power spectra for the five-year analysis (Nolta et al.
2009), we also include W-band maps in the seven-year high-l
polarization analysis.

With these data, we now detect the high-l TE power spectrum
at 21σ , compared to 13 σ for the five-year high-l TE data. This
is a consequence of adding two more years of data and the
W-band data. The TB data can be used to probe a rotation angle
of the polarization plane, Δα, due to potential parity-violating
effects or systematic effects. With the seven-year high-l TB data
we find a limit Δα = −0.◦9 ± 1.◦4 (68% CL). For comparison,
the limit from the five-year high-l TB power spectrum was
Δα = −1.◦2 ± 2.◦2 (68% CL; Komatsu et al. 2009a). See
Section 4.5 for the seven-year limit on Δα from the full
analysis.

Low-l temperature and polarization. Except for using the
seven-year maps and the new temperature KQ85y7 mask, there
is no change in the analysis of the low-l temperature and
polarization data: we use the internal linear combination map
(Gold et al. 2011) to measure the low-l TT power spectrum in
l = 2–32, and calculate the likelihood using the Gibbs sampling
and Blackwell–Rao (BR) estimator (Jewell et al. 2004; Wandelt
2003; Wandelt et al. 2004; O’Dwyer et al. 2004; Eriksen et al.
2004, 2007a, 2007b; Chu et al. 2005; Larson et al. 2007). For the
implementation of the BR estimator in the five-year analysis,
see Section 2.1 of Dunkley et al. (2009). We use Ka-, Q-, and
V-band maps for the low-l polarization analysis in l = 2–23,
and evaluate the likelihood directly in pixel space as described
in Appendix D of Page et al. (2007).

To get a feel for improvements in the low-l polarization data
with two additional years of integration, we note that the seven-
year limits on the optical depth, and the tensor-to-scalar ratio
and rotation angle from the low-l polarization data alone, are
τ = 0.088 ± 0.015 (68% CL; see Larson et al. 2011), r < 1.6
(95% CL; see Section 4.1), and Δα = −3.◦8±5.◦2 (68% CL; see
Section 4.5), respectively. The corresponding five-year limits
were τ = 0.087 ± 0.017 (Dunkley et al. 2009), r < 2.7 (see
Section 4.1), and Δα = −7.◦5 ± 7.◦3 (Komatsu et al. 2009a),
respectively.

In Table 6, we summarize the improvements from the five-
year data mentioned above.

3.2. External Data Sets

The WMAP data are statistically powerful enough to constrain
six parameters of a flat ΛCDM model with a tilted spectrum.
However, to constrain deviations from this minimal model, other
CMB data probing smaller angular scales and astrophysical data
probing the expansion rates, distances, and growth of structure
are useful.

3.2.1. Small-scale CMB Data

The best limits on the primordial helium abundance, Yp, are
obtained when the WMAP data are combined with the power
spectrum data from other CMB experiments probing smaller
angular scales, l � 1000.

We use the temperature power spectra from the Arcminute
Cosmology Bolometer Array Receiver (ACBAR; Reichardt
et al. 2009) and QUEST at DASI (QUaD) (Brown et al. 2009)
experiments. For the former, we use the temperature power

Table 6
Polarization Data: Improvements from the Five-year data

l Range Type Seven Year Five Year

High la TE Detected at 21σ Detected at 13σ

TB Δα = −0.◦9 ± 1.◦4 Δα = −1.◦2 ± 2.◦2

Low lb EE τ = 0.088 ± 0.015 τ = 0.087 ± 0.017
BB r < 2.1 (95% CL) r < 4.7 (95% CL)

EE/BB r < 1.6 (95% CL) r < 2.7 (95% CL)
TB/EB Δα = −3.◦8 ± 5.◦2 Δα = −7.◦5 ± 7.◦3

All l TE/EE/BB r < 0.93 (95% CL) r < 1.6 (95% CL)
TB/EBc Δα = −1.◦1 ± 1.◦4 Δα = −1.◦7 ± 2.◦1

Notes.
a l � 24. The Q-, V-, and W-band data are used for the seven-year analysis,
whereas only the Q- and V-band data were used for the five-year analysis.
b 2 � l � 23. The Ka-, Q-, and V-band data are used for both the seven-year
and five-year analyses.
c The quoted errors are statistical only and do not include the systematic error
±1.◦5 (see Section 4.5).

spectrum binned in 16 band powers in the multipole range
900 < l < 2000. For the latter, we use the temperature power
spectrum binned in 13 band powers in 900 < l < 2000.

We marginalize over the beam and calibration errors of each
experiment: for ACBAR, the beam error is 2.6% on a 5 arcmin
(FWHM) Gaussian beam and the calibration error is 2.05% in
temperature. For QUaD, the beam error combines a 2.5% error
on 5.2 and 3.8 arcmin (FWHM) Gaussian beams at 100 GHz
and 150 GHz, respectively, with an additional term accounting
for the sidelobe uncertainty (see Appendix A of Brown et al.
2009, for details). The calibration error is 3.4% in temperature.

The ACBAR data are calibrated to the WMAP five-year
temperature data, and the QUaD data are calibrated to the
BOOMERanG data (Masi et al. 2006) which are, in turn,
calibrated to the WMAP 1-year temperature data. (The QUaD
team takes into account the change in the calibration from the
1-year to the five-year WMAP data.) The calibration errors
quoted above are much greater than the calibration uncertainty
of the WMAP five-year data (0.2%; Hinshaw et al. 2007). This is
due to the noise of the ACBAR, QUaD, and BOOMERanG data.
In other words, the above calibration errors are dominated by the
statistical errors that are uncorrelated with the WMAP data. We
thus treat the WMAP, ACBAR, and QUaD data as independent.

Figure 7 shows the WMAP seven-year temperature power
spectrum (Larson et al. 2011) as well as the temperature power
spectra from ACBAR and QUaD.

We do not use the other, previous small-scale CMB data, as
their statistical errors are much larger than those of ACBAR and
QUaD, and thus adding them would not improve the constraints
on the cosmological parameters significantly. The new power-
spectrum data from the SPT (Lueker et al. 2010) and ACT
(Fowler et al. 2010) Collaborations were not yet available at the
time of our analysis.

3.2.2. Hubble Constant and Angular Diameter Distances

There are two main astrophysical priors that we shall use
in this paper: the Hubble constant and the angular diameter
distances out to z = 0.2 and 0.35.

1. A Gaussian prior on the present-day Hubble constant,
H0 = 74.2 ± 3.6 km s−1 Mpc−1 (68% CL; Riess et al.
2009). The quoted error includes both statistical and sys-
tematic errors. This measurement of H0 is obtained from
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Figure 7. WMAP seven-year temperature power spectrum (Larson et al. 2011),
along with the temperature power spectra from the ACBAR (Reichardt et al.
2009) and QUaD (Brown et al. 2009) experiments. We show the ACBAR and
QUaD data only at l � 690, where the errors in the WMAP power spectrum are
dominated by noise. We do not use the power spectrum at l > 2000 because of a
potential contribution from the SZ effect and point sources. The solid line shows
the best-fitting six-parameter flat ΛCDM model to the WMAP data alone (see
the third column of Table 1 for the maximum likelihood parameters).

the magnitude–redshift relation of 240 low-z Type Ia su-
pernovae at z < 0.1. The absolute magnitudes of super-
novae are calibrated using new observations from Hub-
ble Space Telescope (HST) of 240 Cepheid variables in
six local Type Ia supernovae host galaxies and the maser
galaxy NGC 4258. The systematic error is minimized by
calibrating supernova luminosities directly using the geo-
metric maser distance measurements. This is a significant
improvement over the prior that we adopted for the five-
year analysis, H0 = 72 ± 8 km s−1 Mpc−1, which is from
the Hubble Key Project final results (Freedman et al. 2001).

2. Gaussian priors on the distance ratios, rs/DV (z = 0.2) =
0.1905±0.0061 and rs/DV (z = 0.35) = 0.1097±0.0036,
measured from the Two-Degree Field Galaxy Redshift
Survey (2dFGRS) and the Sloan Digital Sky Survey Data
Release 7 (SDSS DR7; Percival et al. 2010). The inverse
covariance matrix is given by Equation (5) of Percival
et al. (2010). These priors are improvements from those
we adopted for the five-year analysis, rs/DV (z = 0.2) =
0.1980 ± 0.0058 and rs/DV (z = 0.35) = 0.1094 ± 0.0033
(Percival et al. 2007).
The above measurements can be translated into a measure-
ment of rs/DV (z) at a single, “pivot” redshift: rs/DV (z =
0.275) = 0.1390±0.0037 (Percival et al. 2010). Kazin et al.
(2010) used the two-point correlation function of SDSS-
DR7 LRGs to measure rs/DV (z) at z = 0.278. They found
rs/DV (z = 0.278) = 0.1394 ± 0.0049, which is an ex-
cellent agreement with the above measurement by Percival
et al. (2010) at a similar redshift. The excellent agreement
between these two independent studies, which are based on
very different methods, indicates that the systematic error
in the derived values of rs/DV (z) may be much smaller
than the statistical error.
Here, rs is the comoving sound horizon size at the baryon
drag epoch zd ,

rs(zd ) = c√
3

∫ 1/(1+zd )

0

da

a2H (a)
√

1 + (3Ωb/4Ωγ )a
. (15)

For zd , we use the fitting formula proposed by Eisenstein
& Hu (1998). The effective distance measure, DV (z)

(Eisenstein et al. 2005), is given by

DV (z) ≡
[

(1 + z)2D2
A(z)

cz

H (z)

]1/3

, (16)

where DA(z) is the proper (not comoving) angular diameter
distance:

DA(z) = c

H0

fk

[
H0

√|Ωk|
∫ z

0
dz′

H (z′)

]
(1 + z)

√|Ωk|
, (17)

where fk[x] = sin x, x, and sinh x for Ωk < 0 (k = 1;
positively curved), Ωk = 0 (k = 0; flat), and Ωk > 0
(k = −1; negatively curved), respectively. The Hubble
expansion rate, which has contributions from baryons,
cold dark matter, photons, massless and massive neutrinos,
curvature, and dark energy, is given by Equation (27) in
Section 3.3.

The cosmological parameters determined by combining the
WMAP data, baryon acoustic oscillation (BAO), and H0 will
be called “WMAP+BAO+H0,” and they constitute our best esti-
mates of the cosmological parameters, unless noted otherwise.

Note that, when redshift is much less than unity, the effective
distance approaches DV (z) → cz/H0. Therefore, the effect of
different cosmological models on DV (z) does not appear until
one goes to higher redshifts. If redshift is very low, DV (z) is
simply measuring the Hubble constant.

3.2.3. Power Spectrum of Luminous Red Galaxies

A combination of the WMAP data and the power spec-
trum of LRGs measured from the SDSS DR7 is a powerful
probe of the total mass of neutrinos,

∑
mν , and the effective

number of neutrino species, Neff (Reid et al. 2010b, 2010a). We
thus combine the LRG power spectrum (Reid et al. 2010b) with
the WMAP seven-year data and the Hubble constant (Riess et al.
2009) to update the constraints on

∑
mν and Neff reported in

Reid et al. (2010b). Note that BAO and the LRG power spectrum
cannot be treated as independent data sets because a part of the
measurement of BAO used LRGs as well.

3.2.4. Luminosity Distances

The luminosity distances out to high-z Type Ia supernovae
have been the most powerful data for first discovering the
existence of dark energy (Riess et al. 1998; Perlmutter et al.
1999) and then constraining the properties of dark energy, such
as the equation of state parameter, w (see Frieman et al. 2008,
for a recent review). With more than 400 Type Ia supernovae
discovered, the constraints on the properties of dark energy
inferred from Type Ia supernovae are now limited by systematic
errors rather than by statistical errors.

There is an indication that the constraints on dark energy
parameters are different when different methods are used to fit
the light curves of Type Ia supernovae (Hicken et al. 2009a;
Kessler et al. 2009). We also found that the parameters of the
minimal six-parameter ΛCDM model derived from two com-
pilations of Kessler et al. (2009) are different: one compilation
uses the light curve fitter called SALT-II (Guy et al. 2007) while
the other uses the light curve fitter called MLCS2K2 (Jha et al.
2007). For example, ΩΛ derived from WMAP+BAO+SALT-II
and WMAP+BAO+MLCS2K2 are different by nearly 2σ , de-
spite being derived from the same data sets (but processed with
two different light curve fitters). If we allow the dark energy
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equation of state parameter, w, to vary, we find that w derived
from WMAP+BAO+SALT-II and WMAP+BAO+MLCS2K2 are
different by ∼2.5σ .

At the moment it is not obvious how to estimate systematic
errors and properly incorporate them in the likelihood analysis,
in order to reconcile different methods and data sets.

In this paper, we shall use one compilation of the supernova
data called the “Constitution” samples (Hicken et al. 2009a). The
reason for this choice over the others, such as the compilation
by Kessler et al. (2009) that includes the latest data from the
SDSS-II supernova survey, is that the Constitution samples are
an extension of the “Union” samples (Kowalski et al. 2008) that
we used for the five-year analysis (see Section 2.3 of Komatsu
et al. 2009a). More specifically, the Constitution samples are
the Union samples plus the latest samples of nearby Type Ia
supernovae optical photometry from the Center for Astrophysics
(CfA) supernova group (CfA3 sample; Hicken et al. 2009b).
Therefore, the parameter constraints from a combination of the
WMAP seven-year data, the latest BAO data described above
(Percival et al. 2010), and the Constitution supernova data may
be directly compared to the “WMAP+BAO+SN” parameters
given in Tables 1 and 2 of Komatsu et al. (2009a). This is a useful
comparison, as it shows how much the limits on parameters have
improved by adding two more years of data.

However, given the scatter of results among different com-
pilations of the supernova data, we have decided to choose the
“WMAP+BAO+H0” (see Section 3.2.2) as our best data com-
bination to constrain the cosmological parameters, except for
dark energy parameters. For dark energy parameters, we com-
pare the results from WMAP+BAO+H0 and WMAP+BAO+SN
in Section 5. Note that we always marginalize over the absolute
magnitudes of Type Ia supernovae with a uniform prior.

3.2.5. Time-delay Distance

Can we measure angular diameter distances out to higher
redshifts? Measurements of gravitational lensing time delays
offer a way to determine absolute distance scales (Refsdal 1964).
When a foreground galaxy lenses a background variable source
(e.g., quasars) and produces multiple images of the source,
changes of the source luminosity due to variability appear on
multiple images at different times.

The time delay at a given image position θ for a given source
position β, t(θ,β), depends on the angular diameter distances
as (see, e.g., Schneider et al. 2006, for a review)

t(θ,β) = 1 + zl

c

DlDs

Dls
φF(θ,β), (18)

where Dl, Ds, and Dls are the angular diameter distances out to a
lens galaxy, to a source galaxy, and between them, respectively,
and φF is the so-called Fermat potential, which depends on the
path length of light rays and gravitational potential of the lens
galaxy.

The biggest challenge for this method is to control systematic
errors in our knowledge of φF, which requires a detailed
modeling of mass distribution of the lens. One can, in principle,
minimize this systematic error by finding a lens system where
the mass distribution of lens is relatively simple.

The lens system B1608+656 is not a simple system, with
two lens galaxies and dust extinction; however, it has one of
the most precise time-delay measurements of quadruple lenses.
The lens redshift of this system is relatively large, zl = 0.6304
(Myers et al. 1995). The source redshift is zs = 1.394 (Fassnacht

et al. 1996). This system has been used to determine H0 to 10%
accuracy (Koopmans et al. 2003).

Suyu et al. (2009) have obtained more data from the deep
HST Advanced Camera for Surveys (ACS) observations of
the asymmetric and spatially extended lensed images, and
constrained the slope of mass distribution of the lens galaxies.
They also obtained ancillary data (for stellar dynamics and lens
environment studies) to control the systematics, particularly the
so-called “mass-sheet degeneracy,” which the strong lensing
data alone cannot break. By doing so, they were able to reduce
the error in H0 (including the systematic error) by a factor of
two (Suyu et al. 2010). They find a constraint on the “time-delay
distance,” DΔt , as

DΔt ≡ (1 + zl)
DlDs

Dls

 5226 ± 206 Mpc, (19)

where the number is found from a Gaussian fit to the likelihood
of DΔt

16; however, the actual shape of the likelihood is slightly
non-Gaussian. We thus use

1. Likelihood of DΔt out to the lens system B1608+656 given
by Suyu et al. (2010),

P (DΔt ) = exp[−(ln(x − λ) − μ)2/(2 σ 2)]√
2π (x − λ) σ

, (20)

where x = DΔt /(1 Mpc), λ = 4000, μ = 7.053, and
σ = 0.2282. This likelihood includes systematic errors due
to the mass-sheet degeneracy, which dominates the total
error budget (see Section 6 of Suyu et al. 2010, for more
details). Note that this is the only lens system for which DΔt

(rather than H0) has been constrained.17

3.3. Treating Massive Neutrinos in H (a) Exactly

When we evaluate the likelihood of external astrophysical
data sets, we often need to compute the Hubble expansion rate,
H (a). While we treated the effect of massive neutrinos on H (a)
approximately for the five-year analysis of the external data sets
presented in Komatsu et al. (2009a), we treat it exactly for the
seven-year analysis, as described below.

The total energy density of massive neutrino species, ρν , is
given by (in natural units)

ρν(a) = 2
∫

d3p

(2π )3

1

ep/Tν (a) + 1

∑
i

√
p2 + m2

ν,i , (21)

16 S. H. Suyu (2009, private communication).
17 As the time-delay distance, DΔt , is the angular diameter distance to the
lens, Dl, multiplied by the distance ratio, Ds/Dls, the sensitivity of DΔt to
cosmological parameters is somewhat limited compared to that of Dl
(Fukugita et al. 1990). On the other hand, if the density profile of the lens
galaxy is approximately given by ρ ∝ 1/r2, the observed Einstein radius and
velocity dispersion of the lens galaxy can be used to infer the same distance
ratio, Ds/Dls, and thus one can use this property to constrain cosmological
parameters as well (Futamase & Yoshida 2001; Yamamoto & Futamase 2001;
Yamamoto et al. 2001; Ohyama et al. 2002; Dobke et al. 2009), up to
uncertainties in the density profile (Chiba & Takahashi 2002). By combining
measurements of the time-delay, Einstein ring, and velocity dispersion, one
can in principle measure Dl directly, thereby turning strong gravitational lens
systems into standard rulers (Paraficz & Hjorth 2009). While the accuracy of
the current data for B1608+656 does not permit us to determine Dl precisely
yet (S. H. Suyu & P. J. Marshall 2009, private communication), there seems to
be exciting future prospects for this method. Future prospects of the time-delay
method are also discussed in Oguri (2007) and Coe & Moustakas (2009).
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where mν,i is the mass of each neutrino species. Using the
comoving momentum, q ≡ pa, and the present-day neutrino
temperature, Tν0 = (4/11)1/3Tcmb = 1.945 K, we write

ρν(a) = 1

a4

∫
q2dq

π2

1

eq/Tν0 + 1

∑
i

√
q2 + m2

ν,ia
2. (22)

Throughout this paper, we shall assume that all massive neutrino
species have the equal mass mν , i.e., mν,i = mν for all i.18

When neutrinos are relativistic, one may relate ρν to the
photon energy density, ργ , as

ρν(a) → 7

8

(
4

11

)4/3

Neffργ (a) 
 0.2271Neffργ (a), (23)

where Neff is the effective number of neutrino species. Note that
Neff = 3.04 for the standard neutrino species.19 This motivates
our writing (Equation (22)) as

ρν(a) = 0.2271Neffργ (a)f (mνa/Tν0), (24)

where

f (y) ≡ 120

7π4

∫ ∞

0
dx

x2
√

x2 + y2

ex + 1
. (25)

The limits of this function are f (y) → 1 for y → 0, and
f (y) → 180ζ (3)

7π4 y for y → ∞, where ζ (3) 
 1.202 is the
Riemann zeta function. We find that f (y) can be approximated
by the following fitting formula:20

f (y) ≈ [1 + (Ay)p]1/p, (26)

where A = 180ζ (3)
7π4 
 0.3173 and p = 1.83. This fitting formula

is constructed such that it reproduces the asymptotic limits in
y → 0 and y → ∞ exactly. This fitting formula underestimates
f (y) by 0.1% at y 
 2.5 and overestimates by 0.35% at y 
 10.
The errors are smaller than these values at other y’s.

Using this result, we write the Hubble expansion rate as

H (a) = H0

{
Ωc + Ωb

a3
+

Ωγ

a4
[1 + 0.2271Nefff (mνa/Tν0)]

+
Ωk

a2
+

ΩΛ

a3(1+weff (a))

}1/2

, (27)

where Ωγ = 2.469 × 10−5h−2 for Tcmb = 2.725 K. Using the
massive neutrino density parameter, Ωνh

2 = ∑
mν/(94eV), for

the standard three neutrino species, we find

mνa

Tν0
= 187

1 + z

(
Ωνh

2

10−3

)
. (28)

One can check that (Ωγ /a4)0.2271Nefff (mνa/Tν0) → Ων/a
3

for a → ∞. One may compare Equation (27), which is exact

18 While the current cosmological data are not yet sensitive to the mass of
individual neutrino species, that is, the mass hierarchy, this situation may
change in the future, with high-z galaxy redshift surveys or weak lensing
surveys (Takada et al. 2006; Slosar 2006; Hannestad & Wong 2007; Kitching
et al. 2008; Abdalla & Rawlings 2007).
19 A recent estimate gives Neff = 3.046 (Mangano et al. 2005).
20 Also see Section 5 of Wright (2006), where ρν is normalized by the density
in the non-relativistic limit. Here, ρν is normalized by the density in the
relativistic limit. Both results agree with the same precision.

(if we compute f (y) exactly), to Equation (7) of Komatsu et al.
(2009a), which is approximate.

Throughout this paper, we shall use ΩΛ to denote the dark
energy density parameter at present: ΩΛ ≡ Ωde(z = 0). The
function weff(a) in Equation (28) is the effective equation of
state of dark energy given by weff(a) ≡ 1

ln a

∫ ln a

0 d ln a′w(a′),
and w(a) is the usual dark energy equation of state, i.e., the dark
energy pressure divided by the dark energy density: w(a) ≡
Pde(a)/ρde(a). For vacuum energy (cosmological constant), w
does not depend on time, and w = −1.

4. COSMOLOGICAL PARAMETERS UPDATE EXCEPT
FOR DARK ENERGY

4.1. Primordial Spectral Index and Gravitational Waves

The seven-year WMAP data combined with BAO and H0
exclude the scale-invariant spectrum by 99.5% CL, if we ignore
tensor modes (gravitational waves).

For a power-law spectrum of primordial curvature perturba-
tions Rk , i.e.,

Δ2
R(k) = k3〈|Rk|2〉

2π2
= Δ2

R(k0)

(
k

k0

)ns−1

, (29)

where k0 = 0.002 Mpc−1, we find

ns = 0.968 ± 0.012(68%CL).

For comparison, the WMAP data-only limit is ns = 0.967 ±
0.014 (Larson et al. 2011), and the WMAP plus the small-scale
CMB experiments ACBAR (Reichardt et al. 2009) and QUaD
(Brown et al. 2009) is ns = 0.966+0.014

−0.013. As explained in Section
3.1.2 of Komatsu et al. (2009a), the small-scale CMB data do
not reduce the error bar in ns very much because of relatively
large statistical errors, beam errors, and calibration errors.

How about tensor modes? While the B-mode polarization is
a smoking gun for tensor modes (Seljak & Zaldarriaga 1997;
Kamionkowski et al. 1997b), the WMAP data mainly constrain
the amplitude of tensor modes by the low-l temperature power
spectrum (see Section 3.2.3 of Komatsu et al. 2009a). Neverthe-
less, it is still useful to see how much constraint one can obtain
from the seven-year polarization data.

We first fix the cosmological parameters at the five-year
WMAP best-fit values of a power-law ΛCDM model. We then
calculate the tensor mode contributions to the B-mode, E-mode,
and TE power spectra as a function of one parameter: the
amplitude, in the form of the tensor-to-scalar ratio, r, defined as

r ≡ Δ2
h(k0)

Δ2
R(k0)

, (30)

where Δ2
h(k) is the power spectrum of tensor metric perturba-

tions, hk, given by

Δ2
h(k) = 4k3〈|hk|2〉

2π2
= Δ2

h(k0)

(
k

k0

)nt

. (31)

In Figure 8, we show the limits on r from the B-mode power
spectrum only (r < 2.1, 95% CL), from the B- and E-mode
power spectra combined (r < 1.6), and from the B-mode,
E-mode, and TE power spectra combined (r < 0.93). These
limits are significantly better than those from the five-year data
(r < 4.7, 2.7, and 1.6, respectively), because of the smaller noise
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Table 7
Primordial Tilt ns, Running Index dns/d ln k, and Tensor-to-scalar Ratio r

Section Model Parametera Seven-year WMAPb WMAP+ACBAR+QUaDc WMAP+BAO+H0

Section 4.1 Power-lawd ns 0.967 ± 0.014 0.966+0.014
−0.013 0.968 ± 0.012

Section 4.2 Running ns 1.027+0.050
−0.051

e 1.041+0.045
−0.046 1.008 ± 0.042f

dns/d ln k −0.034 ± 0.026 −0.041+0.022
−0.023 −0.022 ± 0.020

Section 4.1 Tensor ns 0.982+0.020
−0.019 0.979+0.018

−0.019 0.973 ± 0.014
r <0.36 (95% CL) <0.33 (95% CL) <0.24 (95% CL)

Section 4.2 Running ns 1.076 ± 0.065 1.070 ± 0.060
+tensor r <0.49 (95% CL) N/A <0.49 (95% CL)

dns/d ln k −0.048 ± 0.029 −0.042 ± 0.024

Notes.
a Defined at k0 = 0.002 Mpc−1.
b Larson et al. (2011).
c ACBAR (Reichardt et al. 2009); QUaD (Brown et al. 2009).
d The parameters in this row are based on RECFAST version 1.5 (see Appendix A), while the parameters in all the other rows are based on RECFAST
version 1.4.2.
e At the pivot point for WMAP only, where ns and dns/d ln k are uncorrelated, ns (kpivot) = 0.964 ± 0.014. The “pivot wavenumber” may
be defined in two ways: (1) kpivot = 0.0805 Mpc−1 from ns (kpivot) = ns (k0) + 1

2 (dns/d ln k) ln(kpivot/k0), or (2) kpivot = 0.0125 Mpc−1 from
d ln Δ2

R/d ln k
∣∣
k=kpivot

= ns (k0) − 1 + (dns/d ln k) ln(kpivot/k0).
f At the pivot point for WMAP+BAO+H0, where ns and dns/d ln k are uncorrelated, ns (kpivot) = 0.964 ± 0.013. The “pivot wavenumber” may
be defined in two ways: (1) kpivot = 0.106 Mpc−1 from ns (kpivot) = ns (k0) + 1

2 (dns/d ln k) ln(kpivot/k0), or (2) kpivot = 0.0155 Mpc−1 from
d ln Δ2

R/d ln k
∣∣
k=kpivot

= ns (k0) − 1 + (dns/d ln k) ln(kpivot/k0).
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Figure 8. Limits on the tensor-to-scalar ratio, r, from the polarization data
(BB, EE and TE) alone. All the other cosmological parameters, including the
optical depth, are fixed at the five-year best-fit ΛCDM model (Dunkley et al.
2009). The vertical axis shows −2 ln(L/Lmax), where L is the likelihood and
Lmax is the maximum value. This quantity may be interpreted as the standard
χ2, as the likelihood is approximately a Gaussian near the maximum; thus,
−2 ln(L/Lmax) = 4 corresponds to the 95.4% CL limit. The solid, dashed
and dot-dashed lines show the likelihood as a function of r from the BB-only,
BB+EE, and BB+EE+TE data. Left: the seven-year polarization data. We find
r < 2.1, 1.6, and 0.93 (95.4% CL) from the BB-only, BB+EE, and BB+EE+TE
data, respectively. Right: the five-year polarization data. We find r < 4.7,
2.7, and 1.6 (95.4% CL) from the BB-only, BB+EE, and BB+EE+TE data,
respectively.

and shifts in the best-fitting values. For comparison, the B-mode
power spectrum from the BICEP 2-year data gives r < 0.73
(95% CL; Chiang et al. 2010).

If we add the temperature power spectrum, but still fix all
the other cosmological parameters including ns, then we find
r < 0.15 (95% CL) from both five-year and seven-year data;
however, due to a strong correlation between ns and r, this would
be an underestimate of the error. For a 7-parameter model (a
flat ΛCDM model with a tilted spectrum, tensor modes, and

nt = −r/8), we find r < 0.36 (95% CL) from the WMAP data
alone (Larson et al. 2011), r < 0.33 (95% CL) from WMAP
plus ACBAR and QUaD,

r < 0.24 (95% CL)

from WMAP+BAO+H0, and r < 0.20 (95% CL) from
WMAP+BAO+SN, where “SN” is the Constitution samples
compiled by Hicken et al. (2009a; see Section 3.2.4).

We give a summary of these numbers in Table 7.

4.2. Running Spectral Index

Let us relax the assumption that the power spectrum is a pure
power law, and add a “running index,” dns/d ln k as (Kosowsky
& Turner 1995)

Δ2
R(k) = Δ2

R(k0)

(
k

k0

)ns (k0)−1+ 1
2 ln(k/k0)dns/d ln k

. (32)

Ignoring tensor modes again, we find

dns/d ln k = −0.022 ± 0.020(68%CL),

from WMAP+BAO+H0. For comparison, the WMAP data-
only limit is dns/d ln k = −0.034 ± 0.026 (Larson et al.
2011), and the WMAP+ACBAR+QUaD limit is dns/d ln k =
−0.041+0.022

−0.023.
None of these data combinations require dns/d ln k: im-

provements in a goodness-of-fit relative to a power-law model
(Equation (29)) are Δχ2 = −2 ln(Lrunning/Lpower−law) = −1.2,
−2.6, and −0.72 for the WMAP-only, WMAP+ACBAR+QUaD,
and WMAP+BAO+H0, respectively. See Table 7 for the case
where both r and dns/d ln k are allowed to vary.

A simple power-law primordial power spectrum without
tensor modes continues to be an excellent fit to the data. While
we have not done a non-parametric study of the shape of the
power spectrum, recent studies after the five-year data release
continue to show that there is no convincing deviation from a
simple power-law spectrum (Peiris & Verde 2010; Ichiki et al.
2010; Hamann et al. 2010).
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4.3. Spatial Curvature

While the WMAP data alone cannot constrain the spatial
curvature parameter of the observable universe, Ωk , very well,
combining the WMAP data with other distance indicators such
as H0, BAO, or supernovae can constrain Ωk (e.g., Spergel et al.
2007).

Assuming a ΛCDM model (w = −1), we find

−0.0133 < Ωk < 0.0084 (95% CL),

from WMAP+BAO+H0.21 However, the limit weakens signifi-
cantly if dark energy is allowed to be dynamical, w �= −1, as
this data combination, WMAP+BAO+H0, cannot constrain w
very well. We need additional information from Type Ia super-
novae to constrain w and Ωk simultaneously (see Section 5.3
of Komatsu et al. 2009a). We shall explore this possibility in
Section 5.

4.4. Non-adiabaticity: Implications for Axions

Non-adiabatic fluctuations are a powerful probe of the origin
of matter and the physics of inflation. Following Section 3.6 of
Komatsu et al. (2009a), we focus on two physically motivated
models for non-adiabatic fluctuations: axion type (Seckel &
Turner 1985; Linde 1985, 1991; Turner & Wilczek 1991) and
curvaton type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).

For both cases, we consider non-adiabatic fluctuations be-
tween photons and cold dark matter:

S = δρc

ρc

− 3δργ

4ργ

, (33)

and report limits on the ratio of the power spectrum of S and
that of the curvature perturbation R (e.g., Bean et al. 2006):

α(k0)

1 − α(k0)
= PS (k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-type
and curvaton-type by α0 and α−1, respectively.22

We find no evidence for non-adiabatic fluctuations. The
WMAP data-only limits are α0 < 0.13 (95% CL) and α−1 <
0.011 (95% CL; Larson et al. 2011). With WMAP+BAO+H0,
we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 < 0.064 (95% CL)
and α−1 < 0.0037 (95% CL).

The limit on α0 has an important implication for axion dark
matter. In particular, a limit on α0 is related to a limit on the
tensor-to-scalar ratio, r (Kain 2006; Beltran et al. 2007; Sikivie
2008; Kawasaki & Sekiguchi 2008). The explicit formula is

21 The 68% CL limit is Ωk = −0.0023+0.0054
−0.0056.

22 The limits on α can also be converted into the numbers showing “how much
the adiabatic relation (S = 0) can be violated,” δadi, which can be calculated
from

δadi = δρc/ρc − 3δργ /(4ργ )
1
2 [δρc/ρc + 3δργ /(4ργ )]

≈
√

α

3
, (35)

for α � 1 (Komatsu et al. 2009a).

given by Equation (48) of Komatsu et al. (2009a) as23

r = 4.7 × 10−12

θ
10/7
a

(
Ωch

2

γ

)12/7 (Ωc

Ωa

)2/7
α0

1 − α0
, (36)

where Ωa � Ωc is the axion density parameter, θa is the phase
of the Peccei–Quinn field within our observable universe, and
γ � 1 is a “dilution factor” representing the amount by which
the axion density parameter, Ωah

2, would have been diluted due
to a potential late-time entropy production by, e.g., decay of
some (unspecified) heavy particles, between 200 MeV and the
epoch of nucleosynthesis, 1 MeV.

Where does this formula come from? Within the context of the
“misalignment” scenario of axion dark matter,24 there are two
observables one can use to place limits on the axion properties:
the dark matter density and α0. They are given by (e.g., Kawasaki
& Sekiguchi 2008, and references therein)

α0(k)

1 − α0(k)
= Ω2

a

Ω2
c

8ε

θ2
a (fa/Mpl)2

, (37)

Ωah
2 = 1.0 × 10−3γ θ2

a

(
fa

1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H
2
inf is the

so-called slow-roll parameter (where Hinf is the Hubble expan-
sion rate during inflation). For single-field inflation models, ε is
related to r as r = 16ε. By eliminating the axion decay constant,
one obtains Equation (36).

In deriving the above formula for Ωah
2 (Equation (38)), we

have assumed that the axion field began to oscillate before the
QCD phase transition.25 This is true when fa < O(10−2)Mpl;
however, when fa > O(10−2)Mpl, the axions are so light that
the axion field would not start oscillating after the QCD phase
transition.26 In this limit, the formula for Ωah

2 is given by

Ωah
2 = 1.6 × 105γ θ2

a

(
fa

1017GeV

)3/2

. (39)

23 This formula assumes that the axion field began to oscillate before the QCD
phase transition. The formula in the other limit will be given later. We shall
assume that the energy density of the universe was dominated by radiation
when the axion field began to oscillate; however, this may not always be true
(Kawasaki et al. 1996; Kawasaki & Takahashi 2005) when there was a
significant amount of entropy production after the QCD phase transition, i.e.,
γ � 1.
24 We make the following assumptions: the Peccei–Quinn symmetry was
broken during inflation but before the fluctuations we observe today left the
horizon, and was not restored before or after the end of inflation (reheating).
That the Peccei–Quinn symmetry was not restored before reheating requires
the expansion rate during inflation not to exceed the axion decay constant,
Hinf < fa (Lyth & Stewart 1992). That the Peccei–Quinn symmetry was not
restored after reheating requires the reheating temperature after inflation not to
exceed fa.
25 Specifically, the temperature at which the axion field began to oscillate, T1,
can be calculated from the condition 3H (T1) = ma(T1), where
ma(T ) ≈ 0.1ma0(0.2GeV/T )4 is the mass of axions before the QCD phase
transition, T � 0.2GeV, and ma0 = 13MeV(1GeV/fa) is the mass of axions
at the zero temperature. Here, we have used the pion decay constant of
Fπ = 184MeV to calculate ma0, following Equation (3.4.16) of Weinberg
(2008). The Hubble expansion rate during radiation era is given by
M2

plH
2(T ) = (π2/90)g∗T 4, where Mpl = 2.4 × 1018 GeV is the reduced

Planck mass and g∗ is the number of relativistic degrees of freedom. Before
the QCD phase transition, g∗ = 61.75. After the QCD phase transition but
before the electron–positron annihilation, g∗ = 10.75.
26 This dividing point, fa = O(10−2)Mpl, can be found from the condition
T1 = 0.2GeV and 3H (T1) = ma(T1). See Hertzberg et al. (2008) for more
accurate numerical estimate. Note that Hertzberg et al. (2008) used
Fπ = 93MeV for the pion decay constant when calculating the axion mass at
the zero temperature.

16



The Astrophysical Journal Supplement Series, 192:18 (47pp), 2011 February Komatsu et al.

By eliminating fa from Equations (37) and (39), we obtain
another formula for r:

r = 4.0 × 10−10

θ
2/3
a

(
Ωch

2

γ

)4/3 (Ωc

Ωa

)2/3
α0

1 − α0
. (40)

Equations (36) and (40), combined with our limits on Ωch
2

and α0, imply that the axion dark matter scenario in which
axions account for most of the observed amount of dark matter,
Ωa ∼ Ωc, must satisfy

r <
7.6 × 10−15

θ
10/7
a γ 12/7

for fa < O(10−2)Mpl, (41)

r <
1.5 × 10−12

θ
2/3
a γ 4/3

for fa > O(10−2)Mpl. (42)

Alternatively, one can express this constraint as

θaγ
6/5 < 3.3 × 10−9

(
10−2

r

)7/10

for fa < O(10−2)Mpl,

θaγ
2 < 1.8 × 10−15

(
10−2

r

)3/2

for fa > O(10−2)Mpl.

Therefore, a future detection of tensor modes at the level of
r = 10−2 would imply a fine-tuning of θa or γ or both of these
parameters (Komatsu et al. 2009a). If such fine-tunings are not
permitted, axions cannot account for the observed abundance
of dark matter (in the misalignment scenario that we have
considered here).

Depending on one’s interest, one may wish to eliminate the
phase, leaving the axion decay constant in the formula (see
Equation (B7) of Komatsu et al. 2009a):

r = (1.6 × 10−12)

(
Ωch

2

γ

)(
Ωc

Ωa

)(
fa

1012GeV

)5/6
α0

1 − α0
,

(43)
for f < O(10−2)Mpl. This formula gives

fa > 1.8 × 1026GeVγ 6/5
( r

10−2

)6/5
, (44)

which is inconsistent with the condition fa < O(10−2)Mpl
(unless r is extremely small). The formula that is valid for
f > O(10−2)Mpl is

r = (2.2 × 10−8)

(
Ωch

2

γ

)(
Ωc

Ωa

)(
fa

1017GeV

)1/2
α0

1 − α0
,

(45)
which gives

fa > 3.2 × 1032GeVγ 2
( r

10−2

)2
. (46)

Requiring fa < Mpl = 2.4 × 1018 GeV, we obtain

r <
8.7 × 10−10

γ
. (47)

Thus, a future detection of tensor modes at the level of r = 10−2

implies a significant amount of entropy production, γ � 1, or
a super-Planckian axion decay constant, fa � Mpl, or both.
Also see Hertzberg et al. (2008), Mack (2009), and Mack &
Steinhardt (2009) for similar studies.

For the implications of α−1 for curvaton dark matter, see
Section 3.6.4 of Komatsu et al. (2009a).

4.5. Parity Violation

While the TB and EB correlations vanish in a parity-
conserving universe, they may not vanish when global parity
symmetry is broken on cosmological scales (Lue et al. 1999;
Carroll 1998). In pixel space, they would show up as a non-
vanishing 〈Ur〉. As we showed already in Section 2.4, the WMAP
seven-year 〈Ur〉 data are consistent with noise. What can we
learn from this?

It is now a routine work of CMB experiments to deliver the TB
and EB data, and constrain a rotation angle of the polarization
plane due to a parity-violating effect (or a rotation due to some
systematic error). Specifically, a rotation of the polarization
plane by an angle Δα gives the following five transformations:

C
TE,obs
l = CTE

l cos(2Δα), (48)

C
TB,obs
l = CTE

l sin(2Δα), (49)

C
EE,obs
l = CEE

l cos2(2Δα), (50)

C
BB,obs
l = CEE

l sin2(2Δα), (51)

C
EB,obs
l = 1

2
CEE

l sin(4Δα), (52)

where Cl’s on the right-hand side are the primordial power
spectra in the absence of rotation, while Cobs

l ’s on the left-hand
side are what we would observe in the presence of rotation.

Note that these equations are not exact but valid only when the
primordial B-mode polarization is negligible compared to the
E-mode polarization, i.e., CBB

l � CEE
l . For the full expression

including CBB
l , see Lue et al. (1999) and Feng et al. (2005).

Roughly speaking, when the polarization data are still domi-
nated by noise rather than by the cosmic signal, the uncertainty
in Δα is given by a half of the inverse of the signal-to-noise ratio
of TE or EE, i.e.,

Err[ΔαTB] 
 1

2(S/N )TE
,

Err[ΔαEB] 
 1

2(S/N )EE
.

(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should only be
used to provide an intuitive feel of how the errors scale with
signal-to-noise.) As we mentioned in the last paragraph of
Section 2.4, with the seven-year polarization data we detect the
TE power spectrum at 21σ from l = 24 to 800. We thus expect
Err[ΔαTB] 
 1/42 
 0.024 rad 
 1.◦4, which is significantly
better than the five-year value, 2.◦2 (Komatsu et al. 2009a). On
the other hand, we detect the EE power spectrum at l � 24 only
at a few σ level, and thus Err[ΔαEB] � Err[ΔαTB], implying
that we may ignore the high-l EB data.

The magnitude of polarization rotation angle, Δα, depends
on the path length over which photons experienced a parity-
violating interaction. As pointed out by Liu et al. (2006), this
leads to the polarization angle that depends on l. We can divide
this l-dependence in two regimes: (1) l � 20: the polarization
signal was generated during reionization (Zaldarriaga 1997).
We are sensitive only to the polarization rotation between
the reionization epoch and present epoch. (2) l � 20: the
polarization signal was generated at the decoupling epoch. We
are sensitive to the polarization rotation between the decoupling
epoch and present epoch; thus, we have the largest path length
in this case.
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Using the high-l TB data from l = 24 to 800, we find
Δα = −0.◦9 ± 1.◦4, which is a significant improvement over
the five-year high-l result, Δα = −1.◦2 ± 2.◦2 (Komatsu et al.
2009a).

Let us turn our attention to lower multipoles, l � 23.
Here, with the seven-year polarization data, the EE power
spectrum is detected at 5.1σ , whereas the TE power spectrum
is only marginally seen (1.9σ ). (The overall significance level
of detection of the E-model polarization at l � 23, including
EE and TE, is 5.5σ .) We therefore use both the TB and EB data
at l � 23. We find Δα = −3.◦8 ± 5.◦2, which is also a good
improvement over the five-year low-l value, Δα = −7.◦5 ± 7.◦3.

Combining the low-l TB/EB and high-l TB data, we find
Δα = −1.◦1 ± 1.◦4 (the five-year combined limit was Δα =
−1.◦7 ± 2.◦1), where the quoted error is purely statistical;
however, the WMAP instrument can measure the polarization
angle to within ±1.◦5 of the design orientation (Page et al. 2003,
2007). We thus add 1.◦5 as an estimate of a potential systematic
error. Our final seven-year limit is

Δα = −1.◦1 ± 1.◦4(stat.) ± 1.◦5(syst.)(68% CL),

or −5.◦0 < Δα < 2.◦8 (95% CL), for which we have added
the statistical and systematic errors in quadrature (which may
be an underestimate of the total error). The statistical error and
systematic error are now comparable.

Several research groups have obtained limits on Δα from
various data sets (Feng et al. 2006; Kostelecký & Mewes 2007;
Cabella et al. 2007; Xia et al. 2008a; Xia et al. 2008c; Wu
et al. 2009; Gubitosi et al. 2009). Recently, the BOOMERanG
Collaboration (Pagano et al. 2009) revisited a limit on Δα
from their 2003 flight (B2K), taking into account the effect of
systematic errors rotating the polarization angle by −0.◦9 ± 0.◦7.
By removing this, they find Δα = −4.◦3 ± 4.◦1 (68% CL).
The QUaD Collaboration used their final data set to find
Δα = 0.◦64 ± 0.◦50(stat.) ± 0.◦50(syst.) (68% CL; Brown et al.
2009). Xia et al. (2010) used the BICEP 2-year data (Chiang
et al. 2010) to find Δα = −2.◦6 ± 1.◦0 (68% CL statistical);
however, a systematic error of ±0.◦7 needs to be added to this
error budget (see “Polarization orientation uncertainty” in Table
3 of Takahashi et al. 2010). Therefore, basically the systematic
errors in recent measurements of Δα from WMAP seven-year,
QUaD final, and BICEP 2-year data are comparable to the
statistical errors.

Adding the statistical and systematic errors in quadrature
and averaging over WMAP, QUaD and BICEP with the inverse
variance weighting, we find Δα = −0.◦25 ± 0.◦58 (68% CL), or
−1.◦41 < Δα < 0.◦91 (95% CL). We therefore conclude that the
microwave background data are comfortably consistent with
a parity-conserving universe. See, e.g., Kostelecký & Mewes
(2008), Arvanitaki et al. (2010), and references therein for
implications of this result for potential violations of Lorentz
invariance and CPT symmetry.

4.6. Neutrino Mass

Following Section 6.1 of Komatsu et al. (2009a; also see
references therein), we constrain the total mass of neutrinos,∑

mν = 94eV(Ωνh
2), mainly from the seven-year WMAP data

combined with the distance information. A new component in
the analysis is the exact treatment of massive neutrinos when
calculating the likelihood of the BAO data, as described in
Section 3.3 (also see Wright 2006).

For a flat ΛCDM model, i.e., w = −1 and Ωk = 0, the
WMAP-only limit is

∑
mν < 1.3 eV (95% CL), while the

WMAP+BAO+H0 limit is∑
mν < 0.58 eV (95% CL) (for w = −1).

The latter is the best upper limit on
∑

mν without information
on the growth of structure, which is achieved by a better
measurement of the early Integrated Sachs–Wolfe (ISW) effect
through the third acoustic peak of the seven-year temperature
power spectrum (Larson et al. 2011), as well as by a better
determination of H0 from Riess et al. (2009). For explanations
of this effect, see Ichikawa et al. (2005) or Section 6.1.3 of
Komatsu et al. (2009a).

Sekiguchi et al. (2010) combined the five-year version
of WMAP+BAO+H0 with the small-scale CMB data to find∑

mν < 0.66 eV (95% CL). Therefore, the improvement from
this value to our seven-year limit,

∑
mν < 0.58eV, indeed

comes from a better determination of the amplitude of the third
acoustic peak in the seven-year temperature data.

The limit improves when information on the growth of
structure is added. For example, with WMAP+H0 and the
power spectrum of LRGs (Reid et al. 2010b; see Section 3.2.3)
combined, we find

∑
mν < 0.44 eV (95% CL) for w = −1.

The WMAP+BAO+H0 limit on the neutrino mass weakens
significantly to

∑
mν < 1.3 eV (95% CL) for w �= −1 because

we do not use information of Type Ia supernovae here to
constrain w. This is driven by w being too negative: there is
an anti-correlation between w and

∑
mν (Hannestad 2005).

The best-fitting value of w in this case is w = −1.44 ± 0.27
(68% CL).27 For WMAP+LRG+H0, we find

∑
mν < 0.71eV

(95% CL) for w �= −1. When the Constitution supernova data
are included (WMAP+BAO+SN), we find

∑
mν < 0.7128 and

0.91 eV (95% CL) for w = −1 and w �= −1, respectively.
Recent studies after the five-year data release combined

the WMAP five-year data with information on the growth of
structure to find various improved limits. Vikhlinin et al. (2009b)
added the abundance of X-ray-selected clusters of galaxies,
which were found in the ROSAT All Sky Survey and followed
up by the Chandra X-ray Observatory (their cluster catalog
is described in Vikhlinin et al. 2009a), to the WMAP five-
year data, the BAO measurement from Eisenstein et al. (2005),
and the Type Ia supernova data from Davis et al. (2007), to
find

∑
mν < 0.33 eV (95% CL) for w �= −1. Mantz et al.

(2010b) added a different cluster catalog, also derived from
the ROSAT All Sky Survey and followed up by the Chandra
X-ray Observatory (their cluster catalog is described in Mantz
et al. 2010a), and the measurement of the gas mass fraction
of relaxed clusters (Allen et al. 2008) to the WMAP five-year
data, the BAO measurement from Percival et al. (2007), and the
“Union” Type Ia supernova samples from Kowalski et al. (2008)
(all of which constitute the five-year “WMAP+BAO+SN” set in
Komatsu et al. 2009a), to find

∑
mν < 0.33 and 0.43 eV (95%

CL) for w = −1 and w �= −1, respectively.
Reid et al. (2010a) added a prior on the amplitude of

matter density fluctuations, σ8(Ωm/0.25)0.41 = 0.832 ± 0.033
(68% CL; Rozo et al. 2010), which was derived from the
abundance of optically selected clusters of galaxies called the

27 That the neutrino mass and w are anti-correlated implies that the neutrino
mass limit would improve if we impose a prior on w as w � −1.
28 The seven-year WMAP+BAO+SN limit for w = −1 is slightly weaker than
the five-year WMAP+BAO+SN limit, 0.67 eV. The five-year limit was derived
using an approximate treatment of the effect of massive neutrinos on
rs/DV (z). The seven-year limit we quote here, which uses the exact treatment
of massive neutrinos (Section 3.3), is more reliable.
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Table 8
Improvements in Neff : Seven Year Versus Five Year

Parameter Year WMAP Only WMAP+BAO+SN+HST WMAP+BAO+H0 WMAP+LRG+H0

zeq 5 3141+154
−157 3240+99

−97

7 3145+140
−139 3209+85

−89 3240 ± 90

Ωmh2 5 0.178+0.044
−0.041 0.160 ± 0.025

7 0.184+0.041
−0.038 0.157 ± 0.016 0.157+0.013

−0.014

Neff 5 >2.3 (95% CL) 4.4 ± 1.5
7 >2.7 (95% CL) 4.34+0.86

−0.88 4.25+0.76
−0.80

“maxBCG cluster catalog” (Koester et al. 2007), to the five-
year WMAP+BAO+SN, and found

∑
mν < 0.35 and 0.52 eV

(95% CL) for w = −1 and w �= −1, respectively. Thomas
et al. (2010) added the angular power spectra of photometrically
selected samples of LRGs called “MegaZ” to the five-year
WMAP+BAO+SN, and found

∑
mν < 0.325 eV (95% CL) for

w = −1. Wang et al. (2005) pointed out that the limit on
∑

mν

from galaxy clusters would improve significantly by not only
using the abundance but also the power spectrum of clusters.

In order to exploit the full information contained in the
growth of structure, it is essential to understand the effects of
massive neutrinos on the nonlinear growth. All of the work to
date (including WMAP+LRG+H0 presented above) included the
effects of massive neutrinos on the linear growth, while ignoring
their nonlinear effects. The widely used phenomenological
calculation of the nonlinear matter power spectrum called
the HALOFIT (Smith et al. 2003) has not been calibrated
for models with massive neutrinos. Consistent treatments of
massive neutrinos in the nonlinear structure formation using
cosmological perturbation theory (Saito et al. 2008, 2009; Wong
2008; Lesgourgues et al. 2009; Shoji & Komatsu 2009) and
numerical simulations (Brandbyge et al. 2008; Brandbyge &
Hannestad 2009) have just begun to be explored. More work
along these lines would be necessary to exploit the information
on the growth structure to constrain the mass of neutrinos.

4.7. Relativistic Species

How many relativistic species are there in the universe
after the matter-radiation equality epoch? We parameterize the
relativistic dof using the effective number of neutrino species,
Neff , given in Equation (23). This quantity can be written in
terms of the matter density, Ωmh2, and the redshift of matter-
radiation equality, zeq, as (see Equation (84) of Komatsu et al.
2009a)

Neff = 3.04 + 7.44

(
Ωmh2

0.1308

3139

1 + zeq
− 1

)
. (53)

(Here, Ωmh2 = 0.1308 and zeq = 3138 are the five-year
maximum likelihood values from the simplest ΛCDM model.)
This formula suggests that the variation in Neff is given by

δNeff

Neff

 2.45

δ(Ωmh2)

Ωmh2
− 2.45

δzeq

1 + zeq
. (54)

The equality redshift is one of the direct observables from
the temperature power spectrum. The WMAP data constrain
zeq mainly from the ratio of the first peak to the third peak.
As the seven-year temperature power spectrum has a better
determination of the amplitude of the third peak (Larson et al.

2011), we expect a better limit on zeq compared to the five-
year one. For models where Neff is different from 3.04, we find
zeq = 3145+140

−139 (68% CL) from the WMAP data only,29 which
is better than the five-year limit by more than 10% (see Table 8).

However, the fractional error in Ωmh2 is much larger, and
thus we need to determine Ωmh2 using external data. The BAO
data provide one constraint. We also find that Ωmh2 and H0
are strongly correlated in the models with Neff �= 3.04 (see
Figure 9). Therefore, an improved measurement of H0 from
Riess et al. (2009) would help reduce the error in Ωmh2, thereby
reducing the error in Neff . The limit on Ωmh2 from the seven-
year WMAP+BAO+H0 combination is better than the five-year
“WMAP+BAO+SN+HST” limit by 36%.

We find that the WMAP+BAO+H0 limit on Neff is

Neff = 4.34+0.86
−0.88(68% CL),

while the WMAP+LRG+H0 limit is Neff = 4.25+0.76
−0.80

(68% CL), which are significantly better than the five-year
WMAP+BAO+SN+HST limit, Neff = 4.4 ± 1.5 (68% CL).

Reid et al. (2010a) added the maxBCG prior,
σ8(Ωm/0.25)0.41 = 0.832 ± 0.033 (68% CL; Rozo et al. 2010),
to the five-year WMAP+BAO+SN+HST, and found Neff =
3.5±0.9 (68% CL). They also added the above prior to the five-
year version of WMAP+LRG+H0, finding Neff = 3.77 ± 0.67
(68% CL).

The constraint on Neff can also be interpreted as an upper
bound on the energy density in primordial gravitational waves
with frequencies >10−15 Hz. Many cosmological mechanisms
for the generation of stochastic gravitational waves exist, such
as certain inflationary models, electroweak phase transitions,
and cosmic strings. At low frequencies (10−17–10−16 Hz), the
background is constrained by the limit on tensor fluctuations
described in Section 4.1. Constraints at higher frequencies come
from pulsar timing measurements at ∼10−8 Hz (Jenet et al.
2006), recent data from the Laser Interferometer Gravitational
Wave Observatory (LIGO) at 100 Hz (with limits of Ωgw <

6.9 × 10−6 Abbott et al. 2009), and at frequencies >10−10

Hz from measurements of light-element abundances. A large
gravitational wave energy density at nucleosynthesis would
alter the predicted abundances, and observations imply an upper
bound of Ωgwh2 < 7.8 × 10−6 (Cyburt et al. 2005).

The CMB provides a limit that reaches down to 10−15 Hz,
corresponding to the comoving horizon at recombination. The
gravitational wave background within the horizon behaves as
free-streaming massless particles, so affects the CMB and matter
power spectra in the same way as massless neutrinos (Smith
et al. 2006). The density contributed by Ngw massless neutrino
species is Ωgwh2 = 5.6×10−6Ngw. Constraints have been found

29 For models with Neff = 3.04, we find zeq = 3196+134
−133 (68% CL).
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Figure 9. Constraint on the effective number of neutrino species, Neff . Left: joint two-dimensional marginalized distribution (68% and 95% CL), showing how a better
determination of H0 improves a limit on Ωmh2. Middle: a correlation between Neff and Ωmh2. The dashed line shows the line of correlation given by Equation (53).
A better determination of H0 improves a limit on Ωmh2 which, in turn, improves a limit on Neff . Right: one-dimensional marginalized distribution of Neff from
WMAP-only and WMAP+BAO+H0. The 68% interval from WMAP+BAO+H0, Neff = 4.34+0.86

−0.88, is consistent with the standard value, 3.04, which is shown by the
vertical line.

using the WMAP three-year data combined with additional
cosmological probes by Smith et al. (2006), for both adiabatic
and homogeneous initial conditions for the tensor perturbations.
With the current WMAP+BAO+H0 data combination, we define
Ngw = Neff − 3.04, and find limits of

Ngw < 2.85, Ωgwh2 < 1.60 × 10−5(95%CL)

for adiabatic initial conditions, imposing an Neff � 3.04 prior.
Adiabatic conditions might be expected if the gravitational
waves were generated by the appearance of cusps in cosmic
strings (Damour & Vilenkin 2000, 2001; Siemens et al. 2006).
For the WMAP+LRG+H0 data, we find Ngw < 2.64, or
Ωgwh2 < 1.48 × 10−5 at 95% CL. Given a particular string
model, these bounds can be used to constrain the cosmic string
tension (e.g., Siemens et al. 2007; Copeland & Kibble 2009).

4.8. Primordial Helium Abundance

A change in the primordial helium abundance affects the
shape of the temperature power spectrum (Hu et al. 1995). The
most dominant effect is a suppression of the power spectrum at
l � 500 due to an enhanced Silk damping effect.

For a given mass density of baryons (protons and helium
nuclei), the number density of electrons, ne, can be related to
the primordial helium abundance. When both hydrogen and
helium were ionized, ne = (1 − Yp/2)ρb/mp. However, most
of the helium recombines by z ∼ 1800 (see Switzer & Hirata
2008, and references therein), much earlier than the photon
decoupling epoch, z = 1090. As a result, the number density
of free electrons at around the decoupling epoch is given by
ne = (1 − Yp)ρb/mp ∝ (1 − Yp)Ωbh

2 (Hu et al. 1995). The
larger Yp is, the smaller ne becomes. If the number of electrons
is reduced, photons can free-stream longer (the mean free path
of photons, 1/( σT ne), gets larger), wiping out more temperature
anisotropy. Therefore, a larger Yp results in a greater suppression
of power on small angular scales.

Ichikawa et al. (2008; also see Ichikawa & Takahashi 2006)
show that a 100% change in Yp changes the heights of the second,
third, and fourth peaks by ≈1%, 3%, and 3%, respectively.
Therefore, one expects that a combination of the WMAP data
and small-scale CMB experiments such as ACBAR (Reichardt
et al. 2009) and QUaD (Brown et al. 2009) would be a powerful
probe of the primordial helium abundance.

In Figure 10, we compare the WMAP, ACBAR, and QUaD
data with the temperature power spectrum with the nominal
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Figure 10. Primordial helium abundance and the temperature power spectrum.
The data points are the same as those in Figure 7. The lower (pink) solid line
(which is the same as the solid line in Figure 7) shows the power spectrum with
the nominal helium abundance, Yp = 0.24, while the upper (blue) solid line
shows that with a tiny helium abundance, Yp = 0.01. The larger the helium
abundance is, the smaller the number density of electrons during recombination
becomes, which enhances the Silk damping of the power spectrum on small
angular scales, l � 500.

value of the primordial helium abundance, Yp = 0.24 (pink
line), and that with a tiny amount of helium, Yp = 0.01 (blue
line). There is too much power in the case of Yp = 0.01, making
it possible to detect the primordial helium effect using the CMB
data alone.

However, one must be careful about a potential degeneracy
between the effect of helium and those of the other cosmological
parameters. First, as the number density of electrons is given
by ne = (1 − Yp)nb ∝ (1 − Yp)Ωbh

2, Yp and Ωbh
2 may

be correlated. Second, a scale-dependent suppression of power
such as this may be correlated with the effect of tilt, ns (Trotta
& Hansen 2004).

In the left panel of Figure 11, we show that Ωbh
2 and Yp are

essentially uncorrelated: the baryon density is determined by the
first-to-second peak ratio relative to the first-to-third peak ratio,
which is now well measured by the WMAP data. Therefore,
the current WMAP data allow Ωbh

2 to be measured regardless
of Yp.

In the middle panel of Figure 11, we show that there is a
slight positive correlation between ns and Yp: an enhanced Silk
damping produced by a larger Yp can be partially canceled by a
larger ns (Trotta & Hansen 2004).

We find a 95% CL upper limit of Yp < 0.51 from the WMAP
data alone. When we add the ACBAR and QUaD data, we find a
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Figure 11. Constraint on the primordial helium abundance, Yp. Left: joint two-dimensional marginalized distribution (68% and 95% CL), showing that Yp and Ωbh
2
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significant detection of the effect of primordial helium by more
than 3σ (see the right panel of Figure 11),

Yp = 0.326 ± 0.075(68% CL).

The 95% CL limit is 0.16 < Yp < 0.46. The 99% CL lower
limit is Yp > 0.11. This value is broadly consistent with
the helium abundances estimated from observations of low-
metallicity extragalactic ionized (H ii) regions, Yp 
 0.24–0.25
(Gruenwald et al. 2002; Izotov & Thuan 2004; Olive & Skillman
2004; Fukugita & Kawasaki 2006; Peimbert et al. 2007). See
Steigman (2007) for a review.

We can improve this limit by imposing an upper limit on Yp
from these astrophysical measurements. As the helium is created
by nuclear fusion in stars, the helium abundances measured from
stars (e.g., the Sun; see Asplund et al. 2009, for a recent review)
and H ii regions are, in general, larger than the primordial
abundance. On the other hand, as we have just shown, the CMB
data provide a lower limit on Yp. Even with a very conservative
hard prior, Yp < 0.3, we find 0.23 < Yp < 0.3 (68% CL)30.
Therefore, a combination of the CMB and the solar constraints
on Yp offers a new way for testing the predictions of theory
of the big bang nucleosynthesis (BBN). For example, the BBN
predicts that the helium abundance is related to the baryon-to-
photon ratio, η, and the number of additional neutrino species
(or any other additional relativistic dof) during the BBN epoch,
ΔNν ≡ Nν − 3, as (see Equation (11) of Steigman 2008)

Yp = 0.2485 + 0.0016[(η10 − 6) + 100(S − 1)], (55)

where S ≡ √
1 + (7/43)ΔNν 
 1 + 0.081ΔNν and

η10 ≡ 1010η = 273.9(Ωbh
2) = 6.19 ± 0.15 (68% CL;

WMAP+BAO+H0). (See Simha & Steigman 2008, for more dis-
cussion on this method.) For ΔNν = 1, the helium abundance
changes by ΔYp = 0.013, which is much smaller than our error
bar, but is comparable to the expected error bar from Planck
(Ichikawa et al. 2008).

There have been several attempts to measure Yp from the
CMB data (Trotta & Hansen 2004; Huey et al. 2004; Ichikawa
& Takahashi 2006; Ichikawa et al. 2008; Dunkley et al. 2009).
The previous best-limit is Yp = 0.25+0.10(+0.15)

−0.07(−0.17) at 68% CL

30 The upper limit is set by the hard prior. The 68% lower limit,
Yp,min = 0.23, is found such that the integral of the posterior likelihood of Yp
in Yp,min � Yp < 0.3 is 68% of the integral in 0 � Yp < 0.3. Similarly, the
95% CL lower limit is Yp > 0.14 and the 99% CL lower limit is Yp > 0.065.

(95% CL), which was obtained by Ichikawa et al. (2008) from
the WMAP five-year data combined with ACBAR (Reichardt
et al. 2009), BOOMERanG (Jones et al. 2006; Piacentini et al.
2006; Montroy et al. 2006), and Cosmic Background Imager
(CBI; Sievers et al. 2007). Note that the likelihood function of
Yp is non-Gaussian, with a tail extending to Yp = 0; thus, the
level of significance of detection was less than 3σ .

5. CONSTRAINTS ON PROPERTIES OF DARK ENERGY

In this section, we provide limits on the properties of dark
energy, characterized by the equation of state parameter, w.
We first focus on constant (time independent) equation of
state in a flat universe (Section 5.1) and a curved universe
(Section 5.2). We then constrain a time-dependent w given
by w(a) = w0 + wa(1 − a), where a = 1/(1 + z) is the
scale factor, in Section 5.3. Next, we provide the seven-year
“WMAP normalization prior” in Section 5.4, which is useful
for constraining w (as well as the mass of neutrinos) from
the growth of cosmic density fluctuations. (See, e.g., Vikhlinin
et al. 2009b, for an application of the five-year normalization
prior to the X-ray cluster abundance data.) In Section 5.5, we
provide the seven-year “WMAP distance prior,” which is useful
for constraining a variety of time-dependent w models for which
the Markov Chain Monte Carlo exploration of the parameter
space may not be available. (See, e.g., Li et al. 2008; Wang
2008, 2009; Vikhlinin et al. 2009b, for applications of the five-
year distance prior.)

We give a summary of our limits on dark energy parameters
in Table 4.

5.1. Constant Equation of State: Flat Universe

In a flat universe, Ωk = 0, an accurate determination of H0
helps improve a limit on a constant equation of state, w (Spergel
et al. 2003; Hu 2005). Using WMAP+BAO+H0, we find

w = −1.10 ± 0.14(68% CL),

which improves to w = −1.08 ± 0.13 (68% CL) if we add the
time-delay distance out to the lens system B1608+656 (Suyu
et al. 2010, see Section 3.2.5). These limits are independent of
high-z Type Ia supernova data.

The high-z supernova data provide the most stringent limit
on w. Using WMAP+BAO+SN, we find w = −0.980 ±
0.053 (68% CL). The error does not include systematic errors
in supernovae, which are comparable to the statistical error
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(red), WMAP+BAO+H0+DΔt (black), and WMAP+BAO+SN (purple).

(Kessler et al. 2009; Hicken et al. 2009a); thus, the error
in w from WMAP+BAO+SN is about a half of that from
WMAP+BAO+H0 or WMAP+BAO+H0+DΔt .

The cluster abundance data are sensitive to w via the co-
moving volume element, angular diameter distance, and growth
of matter density fluctuations (Haiman et al. 2001). By com-
bining the cluster abundance data and the five-year WMAP
data, Vikhlinin et al. (2009b) found w = −1.08 ± 0.15(stat) ±
0.025(syst) (68% CL) for a flat universe. By adding BAO of
Eisenstein et al. (2005) and the supernova data of Davis et al.
(2007), they found w = −0.991 ± 0.045(stat) ± 0.039(syst)
(68% CL). These results using the cluster abundance data (also
see Mantz et al. 2010c) agree well with our corresponding
WMAP+BAO+H0 and WMAP+BAO+SN limits.

5.2. Constant Equation of State: Curved Universe

When Ωk �= 0, limits on w significantly weaken, with a tail
extending to large negative values of w, unless supernova data
are added.

In Figure 12, we show that WMAP+BAO+H0 allows for
w � −2, which can be excluded by adding information
on the time-delay distance. In both cases, the spatial cur-
vature is well constrained: we find Ωk = −0.0125+0.0064

−0.0067

from WMAP+BAO+H0, and −0.0111+0.0060
−0.0063 (68% CL) from

WMAP+BAO+H0+DΔt , whose errors are comparable to that
of the WMAP+BAO+H0 limit on Ωk with w = −1, Ωk =
−0.0023+0.0054

−0.0056 (68% CL; see Section 4.3).
However, w is poorly constrained: we find w = −1.44 ± 0.27

from WMAP+BAO+H0, and −1.40 ± 0.25 (68% CL) from
WMAP+BAO+H0+DΔt .

Among the data combinations that do not use the
information on the growth of structure, the most powerful
combination for constraining Ωk and w simultaneously is a
combination of the WMAP data, BAO (or DΔt ), and super-
novae, as WMAP+BAO (or DΔt ) primarily constrains Ωk , and
WMAP+SN primarily constrains w. With WMAP+BAO+SN, we
find w = −0.999+0.057

−0.056 and Ωk = −0.0057+0.0066
−0.0068 (68% CL).

Note that the error in the curvature is essentially the same as
that from WMAP+BAO+H0, while the error in w is ∼4 times
smaller.

Vikhlinin et al. (2009b) combined their cluster abundance data
with the five-year WMAP+BAO+SN to find w = −1.03 ± 0.06
(68% CL) for a curved universe. Reid et al. (2010b) combined
their LRG power spectrum with the five-year WMAP data and
the Union supernova data to find w = −0.99 ± 0.11 and
Ωk = −0.0109 ± 0.0088 (68% CL). These results are in good
agreement with our seven-year WMAP+BAO+SN limit.

5.3. Time-dependent Equation of State

As for a time-dependent equation of state, we shall find
constraints on the present-day value of the equation of state
and its derivative using a linear form, w(a) = w0 + wa(1 − a)
(Chevallier & Polarski 2001; Linder 2003). We assume a flat
universe, Ωk = 0. (For recent limits on w(a) with Ωk �= 0, see
Wang 2009, and references therein.) While we have constrained
this model using the WMAP distance prior in the five-year
analysis (see Section 5.4.2 of Komatsu et al. 2009a), in the
seven-year analysis we shall present the full Markov Chain
Monte Carlo exploration of this model.

For a time-dependent equation of state, one must be careful
about the treatment of perturbations in dark energy when w
crosses −1. We use the “parameterized post-Friedmann” (PPF)
approach, implemented in the CAMB code following Fang et al.
(2008).31

In Figure 13, we show the seven-year constraints on w0 and
wa from WMAP+H0+SN (red), WMAP+BAO+H0+SN (blue),
and WMAP+BAO+H0+DΔt+SN (black). The angular diameter
distances measured from BAO and DΔt help exclude models
with large negative values of wa . We find that the current data
are consistent with a cosmological constant, even when w is
allowed to depend on time. However, a large range of values of
(w0, wa) are still allowed by the data: we find

w0 = −0.93 ± 0.13 and wa = −0.41+0.72
−0.71(68% CL),

from WMAP+BAO+H0+SN. When the time-delay distance
information is added, the limits improve to w0 = −0.93 ± 0.12
and wa = −0.38+0.66

−0.65 (68% CL).
Vikhlinin et al. (2009b) combined their cluster abundance data

with the five-year WMAP+BAO+SN to find a limit on a linear
combination of the parameters, wa +3.64(1+w0) = 0.05±0.17
(68% CL). Our data combination is sensitive to a different linear
combination: we find wa + 5.14(1 + w0) = −0.05 ± 0.32 (68%
CL) for the seven-year WMAP+BAO+H0+SN combination.

The current data are consistent with a flat universe dominated
by a cosmological constant.

5.4. WMAP Normalization Prior

The growth of cosmological density fluctuations is a powerful
probe of dark energy, modified gravity, and massive neutrinos.
The WMAP data provide a useful normalization of the cosmo-
logical perturbation at the decoupling epoch, z = 1090. By
comparing this normalization with the amplitude of matter den-
sity fluctuations in a low redshift universe, one may distinguish
between dark energy and modified gravity (Ishak et al. 2006;
Koyama & Maartens 2006; Amarzguioui et al. 2006; Doré et al.
2007; Linder & Cahn 2007; Upadhye 2007; Zhang et al. 2007;
Yamamoto et al. 2007; Chiba & Takahashi 2007; Bean et al.
2007; Hu & Sawicki 2007; Song et al. 2007; Starobinsky 2007;

31 Zhao et al. (2005) used a multi-scalar-field model to treat w crossing −1.
The constraints on w0 and wa have been obtained using this model and the
previous years of WMAP data (Xia et al. 2006, 2008b; Zhao et al. 2007).
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Daniel et al. 2008; Jain & Zhang 2008; Bertschinger & Zukin
2008; Amin et al. 2008; Hu 2008) and determine the mass of
neutrinos (Hu et al. 1998; Lesgourgues & Pastor 2006).

In Section 5.5 of Komatsu et al. (2009a), we provided a
“WMAP normalization prior,” which is a constraint on the power
spectrum of curvature perturbation, Δ2

R. Vikhlinin et al. (2009b)
combined this with the number density of clusters of galaxies to
constrain the dark energy equation of state, w, and the amplitude
of matter density fluctuations, σ8.

The matter density fluctuation in Fourier space, δm,k, is
related to Rk as δm,k(z) = 2k3

5H 2
0 Ωm

RkT (k)D(k, z), where D(k,z)

and T (k) are the linear growth rate and the matter transfer
function normalized such that T (k) → 1 as k → 0, and
(1+z)D(k, z) → 1 as k → 0 during the matter era, respectively.
Ignoring the mass of neutrinos and modifications to gravity,
one can obtain the growth rate by solving a single differential
equation (Wang & Steinhardt 1998; Linder & Jenkins 2003).32

The seven-year normalization prior is

Δ2
R(kWMAP) = (2.208 ± 0.078) × 10−9(68% CL),

where kWMAP = 0.027 Mpc−1. For comparison, the five-year
normalization prior was Δ2

R(0.02 Mpc−1) = (2.21 ± 0.09) ×
10−9. This normalization prior is valid for models with Ωk �= 0,
w �= −1, or mν > 0. However, these normalizations cannot be
used for the models that have the tensor modes, r > 0, or the
running index, dns/d ln k �= 0.

5.5. WMAP Distance Prior

The temperature power spectrum of CMB is sensitive to the
physics at the decoupling epoch, z = 1090, as well as the
physics between now and the decoupling epoch. The former
primarily affects the amplitude of acoustic peaks, i.e., the ratios
of the peak heights and the Silk damping. The latter changes the
locations of peaks via the angular diameter distance out to the

32 See, e.g., Equation (80) of Komatsu et al. (2009a). Note that there is a typo
in that equation: weff (a) needs to be replaced by w(a).

Table 9
WMAP Distance Priors Obtained from the WMAP Seven-year Fit to Models

with Spatial Curvature and Dark Energy

di Seven-year MLa Seven-year Meanb Error, σ

lA 302.09 302.69 0.76
R 1.725 1.726 0.018
z∗ 1091.3 1091.36 0.91

Notes. The correlation coefficients are rlA,R = 0.1956, rlA,z∗ = 0.4595, and
rR,z∗ = 0.7357.
a Maximum likelihood values (recommended).
b Mean of the likelihood.

decoupling epoch. One can quantify this by (1) the “acoustic
scale,” lA,

lA = (1 + z∗)
πDA(z∗)

rs(z∗)
, (56)

where z∗ is the redshift of decoupling, for which we use the
fitting formula of Hu & Sugiyama (1996), as well as by (2) the
“shift parameter,” R (Bond et al. 1997),

R =
√

ΩmH 2
0

c
(1 + z∗)DA(z∗). (57)

These two parameters capture most of the constraining power of
the WMAP data for dark energy properties (Wang & Mukherjee
2007; Wright 2007; Elgarøy & Multamäki 2007; Corasaniti &
Melchiorri 2008), with one important difference. The distance
prior does not capture the information on the growth of structure
probed by the late-time ISW effect. As a result, the dark energy
constraints derived from the distance prior are similar to, but
weaker than, those derived from the full analysis (Komatsu et al.
2009a; Li et al. 2008).

We must understand the limitation of this method. Namely,
the distance prior is applicable only when the model in question
is based on

1. the standard Friedmann–Lemaitre–Robertson–Walker uni-
verse with matter, radiation, dark energy, as well as spatial
curvature,

2. neutrinos with the effective number of neutrinos equal to
3.04, and the minimal mass (mν ∼ 0.05 eV), and

3. nearly power-law primordial power spectrum of curvature
perturbations, |dns/d ln k| � 0.01, negligible primordial
gravitational waves relative to the curvature perturbations,
r � 0.1, and negligible entropy fluctuations relative to the
curvature perturbations, α � 0.1.

In Tables 9 and 10, we provide the seven-year distance prior.
The errors in lA, R, and z∗ have improved from the five-year
values by 12%, 5%, and 2%, respectively. To compute the
likelihood, use

− 2 ln L =
∑
ij

(xi − di)(C
−1)ij (xj − dj ), (58)

where xi = (lA, R, z∗) is the values predicted by a model in
question, di = (lWMAP

A ,RWMAP, zWMAP
∗ ) is the data given

in Table 9, and C−1
ij is the inverse covariance matrix given in

Table 10. Also see Section 5.4.1 of Komatsu et al. (2009a) for
more information.
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Table 10
Inverse Covariance Matrix for the WMAP Distance Priors

lA R z∗
lA 2.305 29.698 −1.333
R 6825.270 −113.180
z∗ 3.414

6. PRIMORDIAL NON-GAUSSIANITY

6.1. Motivation and Background

During the period of cosmic inflation (Starobinskiı̌ 1979;
Starobinsky 1982; Guth 1981; Sato 1981; Linde 1982; Albrecht
& Steinhardt 1982), quantum fluctuations were generated and
became the seeds for the cosmic structures that we observe today
(Mukhanov & Chibisov 1981; Hawking 1982; Starobinsky
1982; Guth & Pi 1982; Bardeen et al. 1983). (Also see Linde
2008, 1990, Mukhanov et al. 1992, Liddle & Lyth 2000, 2009,
Bassett et al. 2006 for reviews.)

Inflation predicts that the statistical distribution of primor-
dial fluctuations is nearly a Gaussian distribution with ran-
dom phases. Measuring deviations from a Gaussian distribu-
tion, i.e., non-Gaussian correlations in primordial fluctuations,
is a powerful test of inflation, as how precisely the distri-
bution is (non-)Gaussian depends on the detailed physics of
inflation (see Bartolo et al. 2004; Komatsu et al. 2009b, for
reviews).

In this paper, we constrain the amplitude of non-Gaussian
correlations using the angular bispectrum of CMB tempera-
ture anisotropy, the harmonic transform of the three-point cor-
relation function (see Komatsu 2001, for a review). The ob-
served angular bispectrum is related to the three-dimensional
bispectrum of primordial curvature perturbations, 〈ζk1ζk2ζk3〉 =
(2π )3δD(k1 + k2 + k3)Bζ (k1, k2, k3). In the linear order, the pri-
mordial curvature perturbation is related to Bardeen’s curvature
perturbation (Bardeen 1980) in the matter-dominated era, Φ, by
ζ = 5

3 Φ (e.g., Kodama & Sasaki 1984). The CMB temperature
anisotropy in the Sachs–Wolfe limit (Sachs & Wolfe 1967) is
given by ΔT/T = − 1

3 Φ = − 1
5ζ . We write the bispectrum of Φ

as

〈Φk1 Φk2 Φk3〉 = (2π )3δD(k1 + k2 + k3)F (k1, k2, k3). (59)

We shall explore three different shapes of the primordial
bispectrum: “local,” “equilateral,” and “orthogonal.” They are
defined as follows:

1. Local form. The local form bispectrum is given by (Gan-
gui et al. 1994; Verde et al. 2000; Komatsu & Spergel
2001)

Flocal(k1, k2, k3) = 2f local
NL [PΦ(k1)PΦ(k2) + PΦ(k2)PΦ(k3)

+ PΦ(k3)PΦ(k1)]

= 2A2f local
NL

[
1

k
4−ns

1 k
4−ns

2

+ (2perm.)

]
,

(60)

where PΦ = A/k4−ns is the power spectrum of Φ with a
normalization factor A. This form is called the local form,
as this bispectrum can arise from the curvature perturbation
in the form of Φ = ΦL + f local

NL Φ2
L, where both sides are

evaluated at the same location in space (ΦL is a linear

Gaussian fluctuation).33 Equation (60) peaks at the so-
called squeezed triangle for which k3 � k2 ≈ k1 (Babich
et al. 2004). In this limit, we obtain

Flocal(k1, k1, k3 → 0) = 4f local
NL PΦ(k1)PΦ(k3). (61)

How large is f local
NL from inflation? The earlier calculations

showed that f local
NL from single-field slow-roll inflation

would be of order the slow-roll parameter, ε ∼ 10−2

(Salopek & Bond 1990; Falk et al. 1993; Gangui et al.
1994). More recently, Maldacena (2003) and Acquaviva
et al. (2003) found that the coefficient of PΦ(k1)PΦ(k3)
from the simplest single-field slow-roll inflation with the
canonical kinetic term in the squeezed limit is given by

Flocal(k1, k1, k3 → 0) = 5

3
(1 − ns)PΦ(k1)PΦ(k3). (62)

Comparing this result with the form predicted by the f local
NL

model, one obtains f local
NL = (5/12)(1 − ns), which gives

f local
NL = 0.015 for ns = 0.963.

2. Equilateral form. The equilateral form bispectrum is given
by (Creminelli et al. 2006)

Fequil(k1, k2, k3) = 6A2f
equil
NL

{
− 1

k
4−ns

1 k
4−ns

2

− 1

k
4−ns

2 k
4−ns

3

− 1

k
4−ns

3 k
4−ns

1

− 2

(k1k2k3)2(4−ns )/3

+

[
1

k
(4−ns )/3
1 k

2(4−ns )/3
2 k

4−ns

3

+ (5 perm.)

]}
. (63)

This function approximates the bispectrum forms that arise
from a class of inflation models in which scalar fields have
non-canonical kinetic terms. One example is the so-called
Dirac–Born–Infeld inflation (Silverstein & Tong 2004;
Alishahiha et al. 2004), which gives f

equil
NL ∝ −1/c2

s in
the limit of cs � 1, where cs is the effective sound speed at
which scalar field fluctuations propagate. There are various
other models that can produce f

equil
NL (Arkani-Hamed et al.

2004; Seery & Lidsey 2005; Chen et al. 2007; Cheung et al.
2008; Li et al. 2008). The local and equilateral forms are
nearly orthogonal to each other, which means that both can
be measured nearly independently.

3. Orthogonal form. The orthogonal form, which is con-
structed such that it is nearly orthogonal to both the local
and equilateral forms, is given by (Senatore et al. 2010)

33 However, Φ = ΦL + f local
NL Φ2

L is not the only way to produce this type of
bispectrum. One can also produce this form from multi-scalar field inflation
models where scalar field fluctuations are nearly scale invariant (Lyth &
Rodriguez 2005); multi-scalar models called “curvaton” scenarios (Linde &
Mukhanov 1997; Lyth et al. 2003); multi-field models in which one field
modulates the decay rate of inflaton field (Dvali et al. 2004a, 2004b;
Zaldarriaga 2004); multi-field models in which a violent production of
particles and nonlinear reheating, called “preheating,” occur due to parametric
resonances (Enqvist et al. 2005; Jokinen & Mazumdar 2006; Chambers &
Rajantie 2008; Bond et al. 2009); models in which the universe contracts first
and then bounces (see Lehners 2008, for a review).
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Forthog(k1, k2, k3) = 6A2f
orthog
NL

{
− 3

k
4−ns

1 k
4−ns

2

− 3

k
4−ns

2 k
4−ns

3

− 3

k
4−ns

3 k
4−ns

1

− 8

(k1k2k3)2(4−ns )/3

+

[
3

k
(4−ns )/3
1 k

2(4−ns )/3
2 k

4−ns

3

+ (5 perm.)

]}
. (64)

This form approximates the forms that arise from a linear
combination of higher-derivative scalar-field interaction
terms, each of which yields forms similar to the equilateral
shape. Senatore et al. (2010) found that, using the “effective
field theory of inflation” approach (Cheung et al. 2008), a
certain linear combination of similarly equilateral shapes
can yield a distinct shape which is orthogonal to both the
local and equilateral forms.

Note that these are not the most general forms one can write
down, and there are other forms which would probe different
aspects of the physics of inflation (Moss & Xiong 2007; Moss &
Graham 2007; Chen et al. 2007; Holman & Tolley 2008; Chen
& Wang 2010; Chen & Wang 2010).

Of these forms, the local form bispectrum has special signif-
icance. Creminelli & Zaldarriaga (2004) showed that not only
models with the canonical kinetic term, but all single-inflation
models predict the bispectrum in the squeezed limit given by
Equation (62), regardless of the form of potential, kinetic term,
slow-roll, or initial vacuum state (also see Seery & Lidsey 2005;
Chen et al. 2007; Cheung et al. 2008). This means that a convinc-
ing detection of f local

NL would rule out all single-field inflation
models.

6.2. Analysis Method and Results

The first limit on f local
NL was obtained from the COBE

4-year data (Bennett et al. 1996) by Komatsu et al. (2002),
using the angular bispectrum. The limit was improved by an
order of magnitude when the WMAP first year data were used
to constrain f local

NL (Komatsu et al. 2003). Since then the limits
have improved steadily as WMAP collect more years of data
and the bispectrum method for estimating f local

NL has improved
(Komatsu et al. 2005; Creminelli et al. 2006, 2007; Spergel et al.
2007; Yadav & Wandelt 2008; Komatsu et al. 2009a; Smith et al.
2009).34

In this paper, we shall adopt the optimal estimator (devel-
oped by Babich 2005; Creminelli et al. 2006, 2007; Smith &
Zaldarriaga 2006; Yadav et al. 2008), which builds on and sig-
nificantly improves the original bispectrum estimator proposed
by Komatsu et al. (2005), especially when the spatial distri-
bution of instrumental noise is not uniform. For details of the
method, see Appendix A of Smith et al. (2009) for f local

NL , and
Section 4.1 of Senatore et al. (2010) for f

equil
NL and f

orthog
NL . To

construct the optimal estimators, we need to specify the cos-
mological parameters. We use the five-year ΛCDM parameters
from WMAP+BAO+SN, for which ns = 0.96.

34 For references to other methods for estimating f local
NL , which do not use the

bispectrum directly, see Section 3.5 of Komatsu et al. (2009a). Recently, the
“skewness power spectrum” has been proposed as a new way to measure f local

NL
and other non-Gaussian components such as the secondary anisotropies and
point sources (Munshi & Heavens 2010; Smidt et al. 2009; Munshi et al. 2009;
Calabrese et al. 2010). In the limit that noise is uniform, their estimator is
equivalent to that of Komatsu et al. (2005), which also allows for simultaneous
estimations of multiple sources of non-Gaussianity (see Appendix A of
Komatsu et al. 2009a). The skewness power spectrum method provides a
means to visualize the shape of various bispectra as a function of multipoles.

Table 11
Estimatesa and the Corresponding 68% Intervals of the Primordial

non-Gaussianity Parameters (f local
NL , f

equil
NL , f

orthog
NL ) and the Point-source

Bispectrum Amplitude, bsrc (in units of 10−5μK3sr2), from the WMAP
Seven-year Temperature Maps

Band Foregroundb f local
NL f

equil
NL f

orthog
NL bsrc

V + W Raw 59 ± 21 33 ± 140 −199 ± 104 N/A
V + W Clean 42 ± 21 29 ± 140 −198 ± 104 N/A
V + W Marg.c 32 ± 21 26 ± 140 −202 ± 104 −0.08 ± 0.12
V Marg. 43 ± 24 64 ± 150 −98 ± 115 0.32 ± 0.23
W Marg. 39 ± 24 36 ± 154 −257 ± 117 −0.13 ± 0.19

Notes.
a The values quoted for “V + W” and “Marg.” are our best estimates from the
WMAP seven-year data. In all cases, the full-resolution temperature maps at
HEALPix Nside = 1024 are used.
b In all cases, the KQ75y7 mask is used.
c “Marg.” means that the foreground templates (synchrotron, free–free, and dust)
have been marginalized over. When the foreground templates are marginalized
over, the raw and clean maps yield the same fNL values.

We also constrain the bispectrum due to residual (unresolved)
point sources, bsrc. The optimal estimator for bsrc is constructed
by replacing alm/Cl in Equation (A24) of Komatsu et al. (2009a)
with (C−1a)lm, and using their Equations (A17) and (A5). The
C−1 matrix is computed by the multigrid-based algorithm of
Smith et al. (2007).

We use the V- and W-band maps at the HEALPix resolution
Nside = 1024. As the optimal estimator weights the data
optimally at all multipoles, we no longer need to choose the
maximum multipole used in the analysis, i.e., we use all the
data. We use both the raw maps (before cleaning foreground)
and foreground-reduced (clean) maps to quantify the foreground
contamination of fNL parameters. For all cases, we find the
best limits on fNL parameters by combining the V- and W-band
maps, and marginalizing over the synchrotron, free–free, and
dust foreground templates (Gold et al. 2011). As for the mask,
we always use the KQ75y7 mask (Gold et al. 2011).

In Table 11, we summarize our results.

1. Local form results. The seven-year best estimate of f local
NL

is
f local

NL = 32 ± 21(68% CL).

The 95% limit is −10 < f local
NL < 74. When the raw maps

are used, we find f local
NL = 59 ± 21 (68% CL). When

the clean maps are used, but foreground templates are
not marginalized over, we find f local

NL = 42 ± 21 (68%
CL). These results (in particular the clean-map versus
the foreground marginalized) indicate that the foreground
emission makes a difference at the level of Δf local

NL ∼ 10.35

We find that the V + W result is lower than the V-band
or W-band results. This is possible, as the V + W result
contains contributions from the cross-correlations of V and
W such as 〈VVW〉 and 〈VWW〉.

2. Equilateral form results. The seven-year best estimate of
f

equil
NL is

f
equil
NL = 26 ± 140(68% CL).

35 The effect of the foreground marginalization depends on an estimator.
Using the needlet bispectrum, Cabella et al. (2010) found f local

NL = 35 ± 42 and
38 ± 47 (68% CL) with and without the foreground marginalization,
respectively.
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The 95% limit is −214 < f
equil
NL < 266. For f

equil
NL ,

the foreground marginalization does not shift the central
values very much, Δf

equil
NL = −3. This makes sense, as the

equilateral bispectrum does not couple small-scale modes
to very large-scale modes l � 10, which are sensitive to
the foreground emission. On the other hand, the local form
bispectrum is dominated by the squeezed triangles, which
do couple large- and small-scale modes.

3. Orthogonal form results. The seven-year best estimate of
f

orthog
NL is

f
orthog
NL = −202 ± 104(68% CL).

The 95% limit is −410 < f
orthog
NL < 6. The foreground

marginalization has little effect, Δf
orthog
NL = −4.

As for the point-source bispectrum, we do not detect bsrc in
V, W, or V + W. In Komatsu et al. (2009a), we estimated that
the residual sources could bias f local

NL by a small positive amount
and applied corrections using Monte Carlo simulations. In this
paper, we do not attempt to make such corrections, but we note
that sources could give Δf local

NL ∼ 2 (note that the simulations
used by Komatsu et al. (2009a) likely overestimated the effect
of sources by a factor of two). As the estimator has changed
from that used by Komatsu et al. (2009a), extrapolating the
previous results is not trivial. Source corrections to f

equil
NL and

f
orthog
NL could be larger (Komatsu et al. 2009a), but we have not

estimated the magnitude of the effect for the seven-year data.
We used the linear perturbation theory to calculate the angular

bispectrum of primordial non-Gaussianity (Komatsu & Spergel
2001). Second-order effects (Pyne & Carroll 1996; Mollerach
& Matarrese 1997; Bartolo et al. 2006, 2007; Pitrou 2009, 2010)
are expected to give f local

NL ∼ 1 (Nitta et al. 2009; Senatore et al.
2009a, 2009b; Khatri & Wandelt 2009, 2010; Boubekeur et al.
2009; Pitrou et al. 2008) and are negligible given the noise level
of the WMAP seven-year data.

Among various sources of secondary non-Gaussianities
which might contaminate measurements of primordial non-
Gaussianity (in particular f local

NL ), a coupling between the ISW
effect and the weak gravitational lensing is the most dominant
source of confusion for f local

NL (Goldberg & Spergel 1999; Verde
& Spergel 2002; Smith & Zaldarriaga 2006; Serra & Cooray
2008; Hanson et al. 2009; Mangilli & Verde 2009). While this
contribution is expected to be detectable and bias the measure-
ment of f local

NL for Planck, it is expected to be negligible for
WMAP: using the method of Hanson et al. (2009), we esti-
mate that the expected signal-to-noise ratio of this term in the
WMAP seven-year data is about 0.8. We also estimate that this
term can give f local

NL a potential positive bias of Δf local
NL ∼ 2.7.

Calabrese et al. (2010) used the skewness power spectrum
method of
Munshi et al. (2009) to search for this term in the WMAP five-
year data and found a null result. If we subtract Δf local

NL estimated
above (for the residual source and the ISW-lensing coupling)
from the measured value, Δf local

NL becomes more consistent with
zero.

From these results, we conclude that the WMAP seven-year
data are consistent with Gaussian primordial fluctuations to
within 95% CL. When combined with the limit on f local

NL from
SDSS, −29 < f local

NL < 70 (95% CL Slosar et al. 2008), we find
−5 < f local

NL < 59 (95% CL).

7. SUNYAEV–ZEL’DOVICH EFFECT

We review the basics of the SZ effect in Section 7.1. In
Section 7.2, we shall test our optimal estimator for extracting the
SZ signal from the WMAP data using the brightest SZ source
on the sky: the Coma cluster. We also present an improved
measurement of the SZ effect toward the Coma cluster (3.6σ ).

The most significant result from Section 7.3 is the discovery
of the thermal/dynamical effect of clusters on the SZ effect. We
shall present the measurements of the SZ effects toward nearby
(z � 0.09) galaxy clusters in Vikhlinin et al.’s sample (Vikhlinin
et al. 2009a), which were used to infer the cosmological
parameters (Vikhlinin et al. 2009b). We then compare the
measured SZ flux to the expected flux from the X-ray data on
the individual clusters, finding a good agreement. Significance
of detection (from merely 11 clusters, excluding Coma) is 6.5σ .
By dividing the sample into cooling-flow and non-cooling-
flow clusters (or relaxed and non-relaxed clusters), we find
a significant difference in the SZ effect between these sub-
samples.

In Section 7.4, we shall report a significant (∼8σ ) statistical
detection of the SZ effect at hundreds of positions of the
known clusters. We then compare the measured SZ flux to
theoretical models as well as to an X-ray-calibrated empirical
model, and discuss implications of our measurement, especially
a recent measurement of the lower-than-theoretically-expected
SZ power spectrum by the SPT Collaboration.

Note that the analyses presented in Sections 7.3 and 7.4
are similar but different in one important aspect: the former
uses a handful (29) of clusters with well-measured Chandra
X-ray data, while the latter uses hundreds of clusters without
detailed X-ray data. Therefore, while the latter results have
smaller statistical errors (and much larger systematic errors),
the former results have much smaller systematic errors (and
larger statistical errors).

7.1. Motivation and Background

When CMB photons encounter hot electrons in clusters
of galaxies, the temperature of CMB changes due to the
inverse Compton scattering by these electrons. This effect,
known as the thermal SZ effect (Zel’dovich & Sunyaev 1969;
Sunyaev & Zel’dovich 1972), is a source of significant additional
(secondary) anisotropies in the microwave sky (see Rephaeli
1995; Birkinshaw 1999; Carlstrom et al. 2002, for reviews).

The temperature change due to the SZ effect in units of
thermodynamic temperature, ΔTSZ, depends on frequency, ν,
and is given by (for a spherically symmetric distribution of
gas):

ΔTSZ(θ )

Tcmb
= gν

σT

mec2

∫ lout

−lout

dlPe

(√
l2 + θ2D2

A

)
, (65)

where θ is the angular distance from the center of a cluster of
galaxies on the sky, DA is the proper (not comoving) angular
diameter distance to the cluster center, l is the radial coordinates
from the cluster center along the line of sight, Pe(r) is the
electron pressure profile, σT is the Thomson cross section, me
is the electron mass, c is the speed of light, and gν is the spectral
function given by

gν ≡ x coth
(x

2

)
− 4, (66)

where x ≡ hν/(kBTcmb) 
 ν/(56.78GHz) for Tcmb =
2.725 K. In the Rayleigh–Jeans limit, ν → 0, one finds
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gν → −2. At the WMAP frequencies, gν = −1.97, −1.94,
−1.91, −1.81, and −1.56 at 23, 33, 41, 61, and 94 GHz, respec-
tively. The integration boundary, lout, will be given later.

The thermal SZ effect (when relativistic corrections are
ignored) vanishes at 
217 GHz. One then finds gν > 0 at higher
frequencies; thus, the thermal SZ effect produces a temperature
decrement at ν < 217 GHz, vanishes at 217 GHz, and produces
a temperature increment at ν > 217 GHz.

The angular power spectrum of temperature anisotropy
caused by the SZ effect is sensitive to both the gas distribution
in clusters (Atrio-Barandela & Mücket 1999; Komatsu & Ki-
tayama 1999) and the amplitude of matter density fluctuations,
i.e., σ8 (Komatsu & Kitayama 1999; Komatsu & Seljak 2002;
Bond et al. 2005). While we have not detected the SZ power
spectrum in the WMAP data, we have detected the SZ signal
from the Coma cluster (Abell 1656) in the one-year (Bennett
et al. 2003c) and three-year (Hinshaw et al. 2007) data.

We have also made a statistical detection of the SZ effect by
cross-correlating the WMAP data with the locations of known
clusters in the X-ray Brightest Abell-type Cluster (XBAC;
Ebeling et al. 1996) catalog (Bennett et al. 2003c; Hinshaw
et al. 2007). In addition, there have been a number of statistical
detections of the SZ effect reported by many groups using
various methods (Fosalba et al. 2003; Hernández-Monteagudo
& Rubiño-Martı́n 2004; Hernández-Monteagudo et al. 2004;
Myers et al. 2004; Afshordi et al. 2005; Lieu et al. 2006; Bielby
& Shanks 2007; Afshordi et al. 2007; Atrio-Barandela et al.
2008; Kashlinsky et al. 2008; Diego & Partridge 2010; Melin
et al. 2010).

7.2. Coma Cluster

The Coma cluster (Abell 1656) is a nearby (z = 0.0231) mas-
sive cluster located near the north Galactic pole (l, b)=(56.◦75,
88.◦05). The angular diameter distance to Coma, calculated from
z = 0.0231 and (Ωm, ΩΛ) = (0.277, 0.723), is DA = 67h−1

Mpc; thus, 10 arcmin on the sky corresponds to the physical
distance of 0.195h−1 Mpc at the redshift of Coma.

To extract the SZ signal from the WMAP temperature map,
we use the optimal method described in Appendix C: we
write down the likelihood function that contains CMB, noise,
and the SZ effect, and marginalize it over CMB. From the
resulting likelihood function for the SZ effect, which is given by
Equation (C7), we find the optimal estimator for the SZ effect
in a given angular bin α, p̂α , as

p̂α = F−1
αβ (tβ)ν ′p′[Npix + C̃]−1

ν ′p′,νpdνp, (67)

where the repeated symbols are summed. Here, dνp is the
measured temperature at a pixel p in a frequency band ν, (tα)νp
is a map of an annulus corresponding to a given angular bin
α, which has been convolved with the beam and scaled by
the frequency dependence of the SZ effect, Npix,νp,ν ′p′ is the
noise covariance matrix (which is taken to be diagonal in pixel
space and ν, i.e., Npix,νp,ν ′p′ = σ 2

νpδνν ′δpp′ ), and C̃νp,ν ′p′ ≡∑
lm Clbνlbν ′lYlm,pY ∗

lm,p′ is the signal covariance matrix of CMB
convolved with the beam (Cl and bνl are the CMB power
spectrum and the beam transfer function, respectively). A matrix
Fαβ gives the 1σ error of p̂α as

√
(F−1)αα , and is given by

Fαβ = (tα)ν ′p′ [Npix + C̃]−1
ν ′p′,νp(tβ)νp. (68)

For dνp, we use the foreground-cleaned V- and W-band
temperature maps at the HEALPix resolution of Nside = 1024,
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Figure 14. Angular radial profile of the SZ effect toward the Coma cluster,
in units of the Rayleigh–Jeans (RJ) temperature (μK). While the V- (green)
and W-band (blue) measurements are contaminated by the CMB fluctuations
around Coma, our optimal estimator can separate the SZ effect and CMB when
the V- and W-band measurements are combined (red). The solid line shows the
best-fitting spherical β model with the core radius of θc = 10.5 arcmin and
β = 0.75. The best-fitting central temperature decrement (fit to a β model) is
TSZ,RJ(0) = −377 ± 105 μK. Note that 10 arcmin corresponds to the physical
distance of 0.195 h−1 Mpc at the location of Coma. The radius within which
the mean overdensity is 500 times the critical density of the universe, r500,
corresponds to about 50 arcmin.

masked by the KQ75y7 mask. Note that the KQ75y7 mask
includes the seven-year source mask, which removes a potential
bias in the reconstructed profile due to any sources which are
bright enough to be resolved by WMAP, as well as the sources
found by other surveys. Specifically, the seven-year point-source
mask includes sources in the seven-year WMAP source catalog
(Gold et al. 2011); sources from Stickel et al. (1994); sources
with 22 GHz fluxes �0.5 Jy from Hirabayashi et al. (2000);
flat spectrum objects from Teräsranta et al. (2001); and sources
from the blazar survey of Perlman et al. (1998) and Landt et al.
(2001).

In Figure 14, we show the measured angular radial profiles
of Coma in 16 angular bins (separated by Δθ = 20 arcmin), in
units of the Rayleigh–Jeans temperature, for the V- and W-band
data, as well as for the V + W combined data. The error bar at a
given angular bin is given by

√
(F−1)αα .

We find that all of these measurements agree well at θ � 130
arcmin; however, at smaller angular scales, θ � 110 arcmin,
the V + W result shows less SZ than both the V- and W-only
results. Does this make sense? As described in Appendix C, our
optimal estimator uses both the C−1-weighted V + W map and
the N−1-weighted V − W map. While the latter map vanishes
for CMB, it does not vanish for the SZ effect. Therefore, the
latter map can be used to separate CMB and SZ effectively.

This explains why the V + W result and the other results are
different only at small angular scales: at θ � 130 arcmin, the
measured signal is |ΔT | � 50μK. If this was due to SZ, the
difference map, V − W, would give |ΔT | � (1–1.56/1.81) ×
50μK 
 7μK, which is smaller than the noise level in the
difference map, and thus would not show up. In other words, our
estimator cannot distinguish between CMB and SZ at θ � 130
arcmin.

On the other hand, at θ � 110 arcmin, each of the V- and
W-band data shows much bigger signals, |ΔT | � 100 μK. If this
was due to SZ, the difference map would give |ΔT | � 14μK,
which is comparable to or greater than the noise level in the

27



The Astrophysical Journal Supplement Series, 192:18 (47pp), 2011 February Komatsu et al.

difference map, and thus would be visible. We find that the
difference map does not detect signals in 50 � θ � 110 arcmin,
which suggests that the measured signal, −100 μK, is not due
to SZ, but due to CMB. As a result, the V + W result shows less
SZ than the V- and W-only results.

In order to quantify a statistical significance of detection and
interpret the result, we model the SZ profile using a spherical β
model (Cavaliere & Fusco-Femiano 1976):

ΔTSZ(θ ) = ΔTSZ(0)[1 + (θ/θc)2](1−3β)/2. (69)

To make our analysis consistent with previous measurements
described later, we fix the core radius, θc, and the slope
parameter, β, at θc = 10.5 arcmin and β = 0.75 (Briel et al.
1992), and vary only the central decrement, ΔTSZ(0). In this
case, the optimal estimator is

ΔTSZ(0) = 1

F
tν ′p′ [Npix + C̃]−1

ν ′p′,νpdνp, (70)

where tνp is a map of the above β model with ΔTSZ(0) = 1, and

F = tν ′p′[Npix + C̃]−1
ν ′p′,νptνp, (71)

gives the 1σ error as 1/
√

F .
For V + W, we find

ΔTSZ,RJ(0) = −377 ± 105 μK(68% CL),

which is a 3.6σ measurement of the SZ effect toward Coma. In
terms of the Compton y-parameter at the center, we find

yWMAP(0) = −1

2

ΔTSZ,RJ(0)

Tcmb

= (6.9 ± 1.9) × 10−5(68% CL).

Let us compare this measurement with the previous mea-
surements. Herbig et al. (1995) used the 5.5 m telescope at the
Owens Valley Radio Observatory (OVRO) to observe Coma at
32 GHz. Using the same θc and β as above, they found the cen-
tral decrement of ΔTSZ,RJ(0) = −505 ± 92μK (68% CL), after
subtracting 38μK due to point sources (5C4.81 and 5C4.85).
These sources have been masked by our point-source mask, and
thus we do not need to correct for point sources.

While our estimate of ΔTSZ,RJ(0) is different from that of
Herbig et al. (1995) only by 1.2σ , and thus is statistically
consistent, we note that Herbig et al. (1995) did not correct
for the CMB fluctuation in the direction of Coma. As the above
results indicate that the CMB fluctuation in the direction of
Coma is on the order of −100 μK, it is plausible that the
OVRO measurement implies ΔTSZ,RJ(0) ∼ −400 K, which is
an excellent agreement with the WMAP measurement.

The Coma cluster has been observed also by the Millimetre
and Infrared Testagrigia Observatory (MITO) experiment (De
Petris et al. 2002). Using the same θc and β as above, Battistelli
et al. (2003) found ΔTSZ(0) = −184 ± 39, −32 ± 79, and
+172±36μK (68% CL) at 143, 214, and 272 GHz, respectively,
in units of thermodynamic temperatures. As MITO has three
frequencies, they were able to separate SZ, CMB, and the
atmospheric fluctuation. By fitting these three data points to
the SZ spectrum, ΔTSZ/Tcmb = gνy, we find yMITO(0) =
(6.8 ± 1.0 ± 0.7) × 10−5, which is an excellent agreement with
the WMAP measurement. The first error is statistical and the
second error is systematic due to 10% calibration error of MITO.

The calibration error of the WMAP data (0.2%; Jarosik et al.
2011) is negligible.

Finally, one may try to fit the multi-wavelength data of TSZ(0)
to separate the SZ effect and CMB. For this purpose, we fit
the WMAP data in V- and W-band to the β model without
correcting for the CMB fluctuation. We find −381 ± 126 μK
and −523 ± 127 μK in thermodynamic units (68% CL). The
OVRO measurement, TSZ,RJ(0) = −505 ± 92μK (Herbig et al.
1995), has been scaled to the Rayleigh–Jeans temperature with
the SZ spectral dependence correction, and thus we use this
measurement at ν = 0. Fitting the WMAP and OVRO data
to the SZ effect plus CMB, and the MITO data only to the SZ
effect (because the CMB was already removed from MITO using
their multi-band data), we find y(0) = (6.8 ± 1.0) × 10−5 and
ΔTcmb(0) = −136 ± 82 μK (68% CL). This result is consistent
with our interpretation that the y-parameter of the center of
Coma is 7 × 10−5 and the CMB fluctuation is on the order of
−100 μK.

The analysis presented here shows that our optimal estimator
is an excellent tool for extracting the SZ effect from multi-
frequency data.

7.3. Nearby Clusters: Vikhlinin et al.’s Low-z sample

The Coma cluster is the brightest SZ cluster on the sky. There
are other clusters that are bright enough to be seen by WMAP.

7.3.1. Sample of Nearby (z < 0.1) Clusters

In order to select candidates, we use the sample of 49 nearby
clusters compiled by Vikhlinin et al. (2009a), which are used
by the cosmological analysis given in Vikhlinin et al. (2009b).
These clusters are selected from the ROSAT All-sky Survey and
have detailed follow-up observations by Chandra. The latter
property is especially important, as it allows us to directly
compare the measured SZ effect in the WMAP data and the
expected one from the X-ray data on a cluster-by-cluster basis,
without relying on any scaling relations.36

Not all nearby clusters in Vikhlinin et al. (2009a) are suitable
for our purpose, as some clusters are too small to be resolved
by the WMAP beam. We thus select the clusters that have the
radius greater than 14′ on the sky: specifically, we use the
clusters whose θ500 ≡ r500/DA(z) is greater than 14′. Here, r500
is the radius within which the mean overdensity is 500 times the
critical density of the universe. We find that 38 clusters satisfy
this condition. (Note that the Coma cluster is not included in
this sample.)

Of these, five clusters have M500 � 6 × 1014 h−1 M�, 7
clusters have 4 × 1014 h−1 M� � M500 < 6 × 1014 h−1 M�, 13
clusters have 2×1014 h−1 M� � M500 < 4×1014 h−1 M�, and
13 clusters have 1 × 1014 h−1 M� � M500 < 2 × 1014 h−1 M�.
Here, M500 is the mass enclosed within r500, i.e., M500 ≡ M(r �
r500).

Finally, we remove the clusters that lie within the KQ75y7
mask (including the diffuse and the source mask), leaving
29 clusters for our analysis. (One cluster (A478) in 4 ×
1014 h−1 M� � M500 < 6 × 1014 h−1 M�, four clusters in
2 × 1014 h−1 M� � M500 < 4 × 1014 h−1 M�, and four clusters
in 1 × 1014 h−1 M� � M500 < 2 × 1014 h−1 M� are masked,
mostly by the point-source mask.) The highest redshift of this
sample is z = 0.0904 (A2142).

36 For this reason, the analysis given in this section is “cleaner” than the one
given in Section 7.4, which uses a larger number of clusters but relies on
scaling relations. Nevertheless, the results obtained from the analysis in this
section and those in Section 7.4 are in good agreement.
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Figure 15. Angular radial profiles of the SZ effect toward nearby massive clusters (with M500 � 4 × 1014 h−1 M� and z � 0.09), in units of the Rayleigh–Jeans (RJ)
temperature (μK). The V- and W-band data are combined optimally to separate the CMB and the SZ effect. All of these clusters have θ500 � 14′, i.e., resolved by
the WMAP beam. The masses, M500, are MY given in the sixth column of Table 2 in Vikhlinin et al. (2009a), times hvikhlinin = 0.72 used by them, except for Coma.
For Coma, we estimate M500 using the mass–temperature relation given in Vikhlinin et al. (2009a) with the temperature of 8.45 keV (Wik et al. 2009). The dashed
lines show the expected SZ effect from the X-ray data on the individual clusters, whereas the solid lines show the prediction from the average pressure profile found
by Arnaud et al. (2010). Note that Coma is not included in the sample of Vikhlinin et al. (2009a), and thus the X-ray data are not shown. We find that Arnaud et al.’s
profiles overpredict the gas pressure (hence the SZ effect) of non-cooling flow clusters. Note that all cooling-flow clusters are “relaxed,” and all non-cooling-flow
clusters are “non-relaxed” (i.e., morphologically disturbed), according to the criterion of Vikhlinin et al. (2009a).

7.3.2. WMAP Versus X-ray: Cluster-by-cluster Comparison

In Figure 15, we show the measured SZ effect in the symbols
with error bars, as well as the expected SZ from the X-ray data
in the dashed lines.

To compute the expected SZ, we use Equation (65) with
Pe = nekBTe, where ne and Te are fits to the X-ray data.
Specifically, we use (see Equations (3) and (8) of Vikhlinin
et al. 2006)37

n2
e(r) = n2

0
(r/rc)−α(

1 + r2/r2
c

)3β−α/2

1

(1 + rγ /r
γ
s )ε/γ

+
n2

02(
1 + r2/r2

c2

)3β2
, (72)

Te(r)

Tmg

= 1.35
(x/0.045)1.9 + 0.45

(x/0.045)1.9 + 1

1

[1 + (x/0.6)2]0.45
, (73)

where x ≡ r/r500. The parameters in the above equations are
found from the Chandra X-ray data, and kindly made available
to us by A. Vikhlinin.

37 With a typo in Equation (8) corrected (A. Vikhlinin 2010, private
communication).

For a given pressure profile, Pe(r), we compute the SZ
temperature profile as

ΔTSZ(θ ) = gνTcmb
σT

mec2
P 2d

e (θ )


 273μKgν

[
P 2d

e (θ )

25eVcm−3Mpc

]
, (74)

where P 2d
e (θ ) is the projected electron pressure profile on the

sky:

P 2d
e (θ ) =

∫ √
r2

out−θ2D2
A

−
√

r2
out−θ2D2

A

dlPe

(√
l2 + θ2D2

A

)
. (75)

Here, we truncate the pressure profile at rout. We take this to
be rout = 6r500. While the choice of the boundary is somewhat
arbitrary, the results are not sensitive to the exact value because
the pressure profile declines fast enough.

We find a good agreement between the measured and expected
SZ signals (see Figure 15), except for A754: A754 is a merging
cluster with a highly disturbed X-ray morphology, and thus
the expected SZ profile, which is derived assuming spherical
symmetry (Equation (74)), may be different from the observed
one.

To make the comparison quantitative, we select clusters
within a given mass bin, and fit the expected SZ profiles
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Table 12
Best-fitting Amplitude for the SZ Effect in the WMAP Seven-year data

Mass Rangea Number of Clusters Vikhlinin et al.b Arnaud et al.c

6 � M500 < 9 5 0.90 ± 0.16 0.73 ± 0.13
4 � M500 < 6 6 0.73 ± 0.21 0.60 ± 0.17
2 � M500 < 4 9 0.71 ± 0.31 0.53 ± 0.25
1 � M500 < 2 9 −0.15 ± 0.55 −0.12 ± 0.47

4 � M500 < 9 11 0.84 ± 0.13 0.68 ± 0.10
1 � M500 < 4 18 0.50 ± 0.27 0.39 ± 0.22

4 � M500 < 9
Cooling flowd 5 1.06 ± 0.18 0.89 ± 0.15
Non-cooling flowe 6 0.61 ± 0.18 0.48 ± 0.15

2 � M500 < 9 20 0.82 ± 0.12 0.660 ± 0.095

1 � M500 < 9 29 0.78 ± 0.12 0.629 ± 0.094

Notes.
a In units of 1014 h−1 M�. Coma is not included. The masses are derived from
the mass–YX relation, and are given in the sixth column of Table 2 in Vikhlinin
et al. (2009a), times hvikhlinin = 0.72.
b Derived from the X-ray data on the individual clusters (Vikhlinin et al. 2009a).
c The “universal pressure profile” given by Arnaud et al. (2010).
d Definition of “cooling flow” follows that of Vikhlinin et al. (2007). All of
cooling-flow clusters here are also “relaxed,” according to the criterion of
Vikhlinin et al. (2009a).
e Definition of “non-cooling flow” follows that of Vikhlinin et al. (2007).
All of non-cooling-flow clusters here are also “non-relaxed” (or mergers or
morphologically disturbed), according to the criterion of Vikhlinin et al. (2009a).

to the WMAP data with a single amplitude, a, treated as a
free parameter. The optimal estimator for the normalization of
pressure, a, is

a = 1

F
tν ′p′ [Npix + C̃]−1

ν ′p′,νpdνp, (76)

where tνp is a map containing the predicted SZ profiles around
clusters, and the 1σ error is 1/

√
F where F is given by

Equation (71).
We summarize the results in the second column of Table 12.

We find that the amplitudes of all mass bins are consistent
with unity (a = 1) to within 2σ (except for the “non-cooling
flow” case, for which a is less than unity at 2.2σ ; we shall
come back to this important point in the next section). The
agreement is especially good for the highest mass bin (M500 �
6 × 1014 h−1 M�), a = 0.90 ± 0.16 (68% CL).

Note that this is a 5.6σ detection of the SZ effect, just from
stacking five clusters. By stacking 11 clusters with M500 �
4 × 1014 h−1 M� (i.e., all clusters in Figure 15 but Coma), we
find a = 0.84 ± 0.13 (68% CL), a 6.5σ detection. In other
words, one does not need to stack many tens or hundreds of
clusters to see the SZ effect in the WMAP data, contrary to
what is commonly done in the literature (Fosalba et al. 2003;
Hernández-Monteagudo & Rubiño-Martı́n 2004; Hernández-
Monteagudo et al. 2004; Myers et al. 2004; Afshordi et al. 2005;
Lieu et al. 2006; Bielby & Shanks 2007; Afshordi et al. 2007;
Atrio-Barandela et al. 2008; Kashlinsky et al. 2008; Diego &
Partridge 2010; Melin et al. 2010).

From this study, we conclude that the WMAP data and the
expectation from the X-ray data are in good agreement.

7.3.3. WMAP Versus a “Universal Pressure Profile” of Arnaud et al.:
Effect of Recent Mergers

Recently, Arnaud et al. (2010) derived pressure profiles of
33 clusters from the X-ray follow-up observations of the REX-

CESS clusters using XMM-Newton. The REXCESS sample
contains clusters selected from the ROSAT All-sky Survey
(Böhringer et al. 2007). By scaling the pressure profiles ap-
propriately by mass and redshift and taking the median of the
scaled profiles, they produced a “universal pressure profile.” We
describe this profile in Appendix D.1.

We show the predicted ΔTSZ(θ ) from Arnaud et al.’s pressure
profile in Figure 15 (solid lines). In order to compute their
profile, we need the mass of clusters, M500. We take M500 from
the sixth column of Table 2 in Vikhlinin et al. (2009a), which are
derived from the so-called mass–YX relation, the most precise
mass proxy known to date with a scatter of about 5%.38 Again,
we take the outer boundary of the pressure to be rout = 6r500.

We fit Arnaud et al.’s profiles to the WMAP data of 29
clusters. We find that, in all but one of the mass bins, the best-
fitting normalization, a, is less than unity by more than 2σ . By
stacking 11 clusters with M500 � 4 × 1014 h−1 M�, we find
a = 0.68 ± 0.10 (68% CL). This measurement rules out a = 1
by 3.2σ . The universal pressure profile overestimates the SZ
effect by ∼30%.

What causes the discrepancy? The thermal/dynamical state
of gas in clusters may be the culprit. From Figure 15, we find
that the X-ray data (hence the SZ effect) and the universal profile
agree well for “cooling flow” clusters, but do not agree for non-
cooling flow clusters.

The cooling flow clusters have cool cores, in which the cool-
ing time (due to bremsstrahlung) is shorter than the Hubble time
(Fabian 1994). The clusters shown in Figure 15 are classified as
either “cooling flow” or “non-cooling flow” clusters, following
the definition of Vikhlinin et al. (2007).

We find that Arnaud et al.’s profiles agree with the X-ray data
on the individual clusters well at θ � 0.3θ500. This agrees with
Figure 8 of Arnaud et al. (2010). The profiles differ significantly
in the inner parts of clusters, which is also in good agreement
with the conclusion of Arnaud et al. (2010): they find that cool-
core clusters show much steeper inner profiles than non-cool-
core clusters (their Figures 2 and 5).

For cooling-flow clusters, the agreement between the WMAP
data and Arnaud et al.’s profile is good: a = 0.89 ± 0.15 (68%
CL). However, for non-cooling-flow clusters, we find a very
low amplitude, a = 0.48 ± 0.15 (68% CL), which rules out
Arnaud et al.’s profile by 3.5σ . A similar trend is also observed
for the individual X-ray data of Vikhlinin et al.: a = 1.06±0.18
and 0.61 ± 0.18 (68% CL) for cooling-flow and non-cooling-
flow clusters, respectively; however, statistical significance is
not large enough to exclude a = 1.

Based on this study, we conclude that one must distinguish
between cool-core (cooling flow) and non-cool-core clusters
when interpreting the observed profile of the SZ effect. It is clear
(at the 3.2σ level) that Arnaud et al.’s profile is inconsistent with
the individual X-ray data and the SZ data taken by WMAP, and
(at the 3.5σ level) one must distinguish between the cool-core
and non-cool-core clusters.

Interestingly, all of cooling-flow clusters are “relaxed” clus-
ters, and all of non-cooling-flow clusters are “non-relaxed” (i.e.,
morphologically disturbed) clusters, according to the criterion
of Vikhlinin et al. (2009a). If we interpret this as non-cooling-

38 The exception is Coma, which is not included in the nearby sample of
Vikhlinin et al. (2009a). Therefore, we use the mass–temperature relation of
Vikhlinin et al. (2009a) (the first row of Table 3) for this cluster:
M500 = (3.02 ± 0.11) × 1014 h−1 M�(TX/5keV)1.53±0.08/E(z), with
E(z) = 1.01 for Coma’s redshift, z = 0.023. We use the X-ray temperature of
TX = 8.45 ± 0.06 keV (Wik et al. 2009).
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flow clusters having undergone recent mergers, then we may
conclude that we are finding the effect of mergers on the SZ
effect.

While our conclusion is still based on a limited number of
clusters, it may be valid for a much larger sample of clusters, as
we shall show in Section 7.5.4.

Finally, we note that the current generation of hydrodynami-
cal simulations predict the pressure profiles that are even steeper
than Arnard et al.’s profile (see Figure 7 of Arnaud et al. 2010).
Therefore, the simulations also overpredict the amount of pres-
sure in clusters relative to the WMAP data. We shall come back
to this point in Section 7.5.5.

7.4. Statistical Detection of the SZ Effect

To explore the SZ effect in a large number of clusters, we
use a galaxy cluster catalog consisting of the ROSAT-ESO flux-
limited X-ray (REFLEX) galaxy cluster survey (Böhringer et al.
2004) in the southern hemisphere above the Galactic plane
(δ < 2.◦5 and |b| > 20◦) and the extended Brightest Cluster
Sample (eBCS; Ebeling et al. 1998, 2000) in the northern
hemisphere above the Galactic plane (δ > 0◦ and |b| > 20◦).
Some clusters are contained in both samples. Eliminating the
overlap, this catalog contains 742 clusters of galaxies. Of these,
400, 228, and 114 clusters lie in the redshift ranges of z � 0.1,
0.1 < z � 0.2, and 0.2 < z � 0.45, respectively.

We use the foreground-reduced V- and W-band maps at the
HEALPix resolution of Nside = 1024, masked by the KQ75y7
mask, which eliminates the entire Virgo cluster. Note that this
mask also includes the point-source mask, which masks sources
at the locations of some clusters (such as Coma). After applying
the mask, we have 361, 214, and 109 clusters in z � 0.1,
0.1 < z � 0.2, and 0.2 < z � 0.45, respectively.

We again use Equation (67) to find the angular radial profile
in four angular bins. For this analysis, (tα)νp is a map containing
many annuli (one annulus around each cluster) corresponding
to a given angular bin α, convolved with the beam and scaled
by the frequency dependence of the SZ effect.

We show the measured profile in the top panel of Figure 16.
We have done this analysis using three different choices of the
maximum redshift, zmax, to select clusters: zmax = 0.1, 0.2,
and 0.45. We find that the results are not sensitive to zmax . As
expected, the results for zmax = 0.1 have the largest error bars.
The error bars for zmax = 0.2 and 0.45 are similar, indicating
that we do not gain much more information from z > 0.2.
The error bars have contributions from instrumental noise and
CMB fluctuations. The latter contribution correlates the errors
at different angular bins.

The top panel shows a decrement of −3.6 ± 1.4 μK at a
very large angular distance from the center, θ = 63 arcmin,
for zmax = 0.2. As we do not expect to have such an extended
gas distribution around clusters, one may wonder if this result
implies that we have a bias in the zero level. In order to check
for a potential systematic bias, we perform the following null
test: instead of measuring the SZ signals from the locations
of clusters, we measure them from random locations in the
WMAP data. In the middle panel of Figure 16, we show that our
method passes a null test. We find that the measured profiles
are consistent with zero; thus, our method does not introduce
a bias.

Is this signal at a degree scale real? For example, are there
nearby massive clusters (such as Coma) which give a significant
SZ effect at a degree scale? While the Virgo cluster has the
largest angular size on the sky, the KQ75y7 mask eliminates
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Figure 16. Average temperature profile of the SZ effect from the stacking
analysis, in units of the Rayleigh–Jeans (RJ) temperature (μK), at θ = 7, 35,
63, and 91 arcmin. The V- and W-band data are combined using the optimal
estimator. Top: the SZ effect measured from the locations of clusters of galaxies.
The results with three different maximum redshifts, zmax = 0.1 (blue; left), 0.2
(green; middle), and 0.45 (red; right), are shown. The error bars include noise
due to the CMB fluctuation, and thus are correlated (see Equation (77) for
the correlation matrix). Middle: a null test showing profiles measured from
random locations on the sky (for zmax = 0.2; the number of random locations
is the same as the number of clusters used in the top panel). Three random
realizations are shown. Our method does not produce biased results. Bottom:
the measured profile (zmax = 0.2) is compared with the model profiles derived
from the median of 33 clusters in the REXCESS sample (Arnaud et al. 2010) and
theoretically calculated from hydrostatic equilibrium (Komatsu & Seljak 2001)
with two different concentration parameters. Note that the model profiles are
calculated also for zmax = 0.2 but have not been multiplied by the best-fitting
normalization factors given in Table 13. The theoretical profiles are processed
in the same manner that the data are processed, using Equation (68).

Virgo. In order to see if other nearby clusters give significant
contributions, we remove all clusters at z � 0.03 (where there
are 57 clusters) and remeasure the SZ profile. We find that
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the changes are small, less than 1 μK at all angular bins. At
θ = 63 arcmin, the change is especially small, ∼0.1 μK, and
thus nearby clusters do not make much contribution to this bin.

The apparent decrement at θ = 63 arcmin is probably due to
a statistical fluctuation. The angular bins are correlated with the
following correlation matrix:⎛

⎜⎝
1 0.5242 0.0552 0.0446

0.5242 1 0.4170 0.0638
0.0552 0.4170 1 0.4402
0.0446 0.0638 0.4402 1

⎞
⎟⎠ , (77)

where the columns correspond to θ = 7, 35, 63, and 91 arcmin,
respectively. The decrements at the first two bins (at θ = 7
and 35 arcmin) can drive the third bin at θ = 63 arcmin
to be more negative. Note also that one of the realizations
shown in the bottom panel (“Random 1” in the middle panel
of Figure 16) shows ∼ − 3.5 μK at θ = 63 arcmin. The second
bin is also negative with a similar amplitude. On the other hand,
“Random 2” shows both positive temperatures at the second and
third bins, which is also consistent with a positive correlation
between these bins.

Finally, in the bottom panel of Figure 16, we compare the
measured SZ profile with the expected profiles from various
cluster gas models (described in Section 7.5). None of them
show a significant signal at θ = 63 arcmin, which is also con-
sistent with our interpretation that it is a statistical fluctuation.

7.5. Interpretations

7.5.1. General Idea

In order to interpret the measured SZ profile, we need a model
for the electron pressure profile, Pe(r) (see Equation (65)). For
fully ionized gas, the electron pressure is related to the gas
(baryonic) pressure, Pgas(r), by

Pe(r) =
(

2 + 2X

3 + 5X

)
Pgas(r), (78)

where X is the abundance of hydrogen in clusters. For X = 0.76,
one finds Pe(r) = 0.518Pgas(r).

We explore three possibilities: (1) Arnaud et al.’s profile that
we have used in Section 7.3, (2) theoretical profiles derived
by assuming that the gas pressure is in hydrostatic equilibrium
with gravitational potential given by a Navarro–Frenk–White
(NFW; Navarro et al. 1997) mass density profile (Komatsu &
Seljak 2001), and (3) theoretical profiles from hydrodynamical
simulations of clusters of galaxies with and without gas cooling
and star formation (Nagai et al. 2007).

Case (2) is relevant because this profile is used in the
calculation of the SZ power spectrum (Komatsu & Seljak 2002)
that has been used as a template to marginalize over in the
cosmological parameter estimation since the three-year analysis
(Spergel et al. 2007; Dunkley et al. 2009; Larson et al. 2011).
Analytical models and hydrodynamical simulations for the SZ
signal are also the basis for planned efforts to use the SZ signal
to constrain cosmological models.

As we have shown in the previous section using 29 nearby
clusters, Arnaud et al.’s pressure profile overpredicts the SZ
effect in the WMAP data by ∼30%. An interesting question is
whether this trend extends to a larger number of clusters.

7.5.2. Komatsu–Seljak Profile

The normalization of the KS profile has been fixed by
assuming that the gas density at the virial radius is equal

to the cosmic mean baryon fraction, Ωb/Ωm, times the total
mass density at the virial radius. This is an upper limit: for
example, star formation turns gas into stars, reducing the amount
of gas. KS also assumes that the gas is virialized and in
thermal equilibrium (i.e., electrons and protons share the same
temperature) everywhere in a cluster, that virialization converts
potential energy of the cluster into thermal energy only, and
that the pressure contributed by bulk flows, cosmic rays, and
magnetic fields are unimportant.

We give details of the gas pressure profiles in Appendix D. In
the top left panel of Figure 17, we show Arnaud et al.’s pressure
profiles (see Appendix D.1) in the solid lines, and the KS profiles
(see Appendix D.2) in the dotted and dashed lines. One of the
inputs for the KS profile is the so-called concentration parameter
of the NFW profile. The dotted line is for the concentration
parameter of c = 10(Mvir/3.42 × 1012 h−1 M�)−0.2/(1 + z)
(Seljak 2000), which was used by Komatsu & Seljak (2002)
for their calculation of the SZ power spectrum. Here, Mvir is
the virial mass, i.e., mass enclosed within the virial radius. The
dashed line is for c = 7.85(Mvir/2 × 1012 h−1 M�)−0.081/(1 +
z)0.71, which was found from recent N-body simulations with the
WMAP five-year cosmological parameters (Duffy et al. 2008).

We find that the KS profiles and Arnaud et al.’s profiles
generally agree. The agreement is quite good especially for
the KS profile with the concentration parameter of Duffy
et al. (2008). The KS profiles tend to overestimate the gas
pressure relative to Arnaud et al.’s one for low-mass clusters
(M� � 1014 h−1 M�). Can we explain this trend by a smaller
gas mass fraction in clusters than the cosmic mean? To answer
this, we compute the gas mass fraction by integrating the gas
density profile:

fgas ≡ Mgas,500

M500
= 4π

∫ r500

0 r2drρgas(r)

M500
, (79)

where M500 and Mgas,500 are the total mass and gas mass
contained within r500, respectively.

In Figure 18, we show fgas from X-ray observations (Vikhlinin
et al. 2009a):

fgas(h/0.72)3/2 = 0.125 + 0.037 log10(M500/1015 h−1 M�),
(80)

for h = 0.7, and fgas from the KS profiles with the concentration
parameters of Seljak (2000) and Duffy et al. (2008). We find
that the KS predictions, fgas 
 0.12, are always much smaller
than the cosmic mean baryon fraction, Ωb/Ωm = 0.167, and
are nearly independent of mass. A slight dependence on mass is
due to the dependence of the concentration parameters on mass.
While the KS profile is normalized such that the gas density at
the virial radius is Ωb/Ωm times the total mass density, the gas
mass within r500 is much smaller than Ωb/Ωm times M500, as the
gas density and total matter density profiles are very different
near the center: while the gas density profile has a constant-
density core, the total matter density, which is dominated by
dark matter, increases as ρm ∝ 1/r near the center.

However, the behavior of fgas measured from X-ray observa-
tions is very different. It has a much steeper dependence on mass
than predicted by KS. The reason for such a steep dependence
on mass is not yet understood. It could be due to star formation
occurring more effectively in lower mass clusters. In any case,
for M500 = 3 × 1014 h−1 M�, the observed gas mass fraction is
fgas 
 0.11, which is only 10% smaller than the KS value, 0.12.
For M500 = 3 × 1013 h−1 M�, the observed gas mass fraction,
0.08, is about 30% smaller than the KS value. This is consistent
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Figure 17. Gas pressure profiles of clusters of galaxies, Pgas(r), at z = 0.1, and the projected profiles of the SZ effect, ΔTSZ(θ ) (Rayleigh–Jeans temperature in μK).
Top left: the gas pressure profiles. The upper and bottom set of curves show M500 = 3 × 1014 and 3 × 1013 h−1 M�, respectively. The horizontal axis shows radii
scaled by the corresponding r500 = 0.78 and 0.36 h−1 Mpc, respectively. The solid lines show Pgas(r) = Pe(r)/0.518 derived from X-ray observations (Arnaud et al.
2010), while the dotted and dashed lines show Pgas(r) predicted from hydrostatic equilibrium (Komatsu & Seljak 2001) with NFW concentration parameters of Seljak
(2000) and Duffy et al. (2008), respectively. Top right: the projected SZ profiles computed from the corresponding curves in the top left panel and Equation (74). The
horizontal axis shows angular radii scaled by θ500 = r500/DA, which is 10 and 4.7 arcmin for M500 = 3 × 1014 and 3 × 1013 h−1 M�, respectively. Bottom left: same
as the top left panel, but the dotted and dashed lines show Pgas(r) predicted from “Cooling+Star Formation” and “Non-radiative” simulation runs by Nagai et al. (2007).
Bottom right: same as the top right panel, but the dotted and dashed lines are computed from the corresponding curves in the bottom left panel and Equation (74).

with the difference between the KS and Arnaud et al.’s pressure
profiles that we see in Figure 17; thus, once the observed mass
dependence of fgas is taken into account, these profiles agree
well.

To calibrate the amplitude of gas pressure, we shall use the KS
pressure profile (without any modification to fgas) as a template,
and find its normalization, a, from the WMAP data using the
estimator given in Equation (76). We shall present the results
for hydrodynamical simulations later.

For a given gas pressure profile, Pgas(r), we compute the
electron pressure as Pe = 0.518Pgas (see Equation (78)). We
then use Equation (74) to calculate the expected SZ profile,
ΔTSZ(θ ). We take the outer boundary of the pressure to be three
times the virial radius, rout = 3rvir, which is the same as the
parameter used by Komatsu & Seljak (2002). In the right panels
of Figure 17, we show the predicted ΔTSZ(θ ), which will be used
as templates, i.e., tνp.

7.5.3. Luminosity–Size Relation

Now, in order to compute the expected pressure profiles
from each cluster in the catalog, we need to know r500. We
calculate r500 from the observed X-ray luminosity in ROSAT’s
0.1–2.4 keV band, LX , as

r500 = (0.753 ± 0.063) h−1 Mpc

E(z)

×
(

LX

1044 h−2 erg s−1

)0.228±0.015

, (81)

where E(z) ≡ H (z)/H0 = [Ωm(1 + z)3 + ΩΛ]1/2 for a ΛCDM
model. This is an empirical relation found from X-ray ob-
servations (see Equation (2) of Böhringer et al. 2007) based
upon the temperature–LX relation from Ikebe et al. (2002) and
the r500–temperature relation from Arnaud et al. (2005). The
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from hydrostatic equilibrium (Komatsu & Seljak 2001) with NFW concentration
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error bars have been calculated by propagating the errors in
the temperature–LX and r500–temperature relations. Admittedly,
there is a significant scatter around this relation, which is the
most dominant source of systematic error in this type of analy-
sis. (The results presented in Section 7.3 do not suffer from this
systematic error, as they do not rely on LX–r500 relations.) As
M500 ∝ r3

500, a ≈10% error in the predicted values of r500 gives
the mass calibration error of ≈30%. Moreover, the SZ effect is
given by M500 times the gas temperature, the latter being pro-
portional to M

2/3
500 according to the virial theorem. Therefore, the

total calibration error can be as big as ≈50%.
In order to quantify this systematic error, we repeat our

analysis for three different size–luminosity relations: (1) the
central values, (2) the normalization and slope shifted up by
1σ to 0.816 and 0.243, and (3) the normalization and slope
shifted down by 1σ to 0.690 and 0.213. We adopt this as
an estimate for the systematic error in our results due to the
size–luminosity calibration error. For how this error would affect
our conclusions, see Section 7.7.

Note that this estimate of the systematic error is conservative,
as we allowed all clusters to deviate from the best-fit scaling
relation at once by ±1σ . In reality, the nature of this error is
random, and thus the actual error caused by the scatter in the
scaling relation would probably be smaller. Melin et al. (2010)
performed such an analysis and found that the systematic error
is sub-dominant compared to the statistical error.

Nevertheless, we shall adopt our conservative estimate of the
systematic error, as the mean scaling relation also varies from
authors to authors. The mean scaling relations used by Melin
et al. (2010) are within the error bar of the scaling relation that
we use (Equation (81)).

In Figure 19, we show the distribution of M500 estimated
from clusters in the catalog using the measured values of
LX and Equations (81) and (D2). The distribution peaks at
M500 ∼ 3 × 1014 h−1 M� for zmax = 0.2 and 0.45, while it
peaks at M500 ∼ 1.5 × 1014 h−1 M� for zmax = 0.1.

7.5.4. Results: Arnaud et al.’s Profile

For Arnaud et al.’s pressure profile, we find the best-fitting
amplitudes of a = 0.64 ± 0.09 and 0.59 ± 0.07 (68% CL)
for zmax = 0.1 and 0.2, respectively. The former result is
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Figure 19. Distribution of M500 estimated from clusters in the catalog using the
measured X-ray luminosities in 0.1–2.4 keV band, LX , and Equations (81) and
(D2). The light blue, dark blue, and pink histograms show zmax = 0.45, 0.2,
and 0.1, respectively.

fully consistent with what we find from the nearby clusters in
Section 7.3: a = 0.63 ± 0.09 (68% CL; for 1 × 1014 h−1 M� �
M500 < 9 × 1014 h−1 M� and z � 0.09).

The significance level of statistical detection of the SZ effect
is about 8σ for zmax = 0.2. With the systematic error included,
we find a = 0.59 ± 0.07+0.38

−0.23 for zmax = 0.2; however, the
above agreement may suggest that the fiducial scaling relation
(Equation (81)) is, in fact, a good one.

As we have shown in Section 7.3, the measured SZ effects
and the predictions from the X-ray data agree on a cluster-
by-cluster basis. A plausible explanation for the discrepancy
between the WMAP data and Arnaud et al.’s profile is that
Arnaud et al.’s profile does not distinguish between cooling-
flow and non-cooling-flow clusters.

Nevertheless, this result, which shows that the SZ effect
seen in the WMAP data is less than the average “expectation”
from X-ray observations, agrees qualitatively with some of
the previous work (Lieu et al. 2006; Bielby & Shanks 2007;
Diego & Partridge 2010). The other work showed that the SZ
effect seen in the WMAP data is consistent with expectations
from X-ray observations (Afshordi et al. 2007; Melin et al.
2010).

These authors used widely different methods and cluster
catalogs. Lieu et al. (2006) were the first to claim that the
SZ effect seen in the WMAP data is significantly less than
expected from X-ray data, by using 31 clusters compiled by
Bonamente et al. (2002). Bielby & Shanks (2007) extended the
analysis of Lieu et al. (2006) by using 38 clusters compiled
by Bonamente et al. (2006), for which the observational data
of the SZ effect from OVRO and Berkeley Illinois Maryland
Association (BIMA) are available. They did not use scaling
relations, but used a spherical isothermal β model to fit the
X-ray surface brightness profile of each cluster in the catalog,
and calculated the expected SZ signals, assuming that the
intracluster gas is isothermal. Lieu et al. (2006) found that the
measured signal is smaller than expected from X-ray data by
a factor of 3–4, and Bielby & Shanks (2007) found a similar
result for the cluster catalog of Bonamente et al. (2006).

Diego & Partridge (2010) used the same cluster catalog that
we use (REFLEX+eBCS), but used a different scaling relation:
they related the cluster core radius to the X-ray luminosity
(we relate r500 to the X-ray luminosity). They found a large
discrepancy (similar to Lieu et al. 2006; Bielby & Shanks 2007)
when a spherical isothermal β model was used to predict the
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SZ signal, while they found a smaller discrepancy (similar
to our results) when more realistic gas models were used.
Afshordi et al. (2007) used 193 clusters selected from the
XBAC catalog. Their catalog consisted of the clusters that
have measured X-ray temperatures (>3 keV). They then used
a scaling relation between r200 and the X-ray temperature.
They found that the measured SZ signal and X-ray data are
consistent.

Melin et al. (2010) used the five-year WMAP data and a bigger
sample of 893 clusters and a scaling relation between r500 and the
X-ray luminosity taken from Pratt et al. (2009) and Arnaud et al.
(2010). They compared the measured integrated pressure from
the WMAP data to the expectation from Arnaud et al.’s profile,
and concluded that they agree very well. (The normalization is
consistent with unity within the statistical uncertainty.) We find,
on the other hand, that the normalization is significantly less
than unity compared to the statistical uncertainty. How can we
reconcile these results?

One possibility would be the difference in the scaling rela-
tions. The scaling relation shifted down by 1σ would make the
predicted SZ signals smaller, which would then increase the
best-fitting amplitude. Given the size of the systematic error,
a = 0.59 ± 0.07+0.38

−0.23, a ≈ 1 may not be inconsistent with the
data. Specifically, they used two scaling relations:

1. r500 = 0.717 h−1 Mpc
E1.19(z) [L500/(1044 h−2 erg s−1)]0.222,

2. r500 = 0.745 h−1 Mpc
E1.15(z) [L500/(1044 h−2 erg s−1)]0.207,

where the relations 1 and 2 correspond to the “REXCESS” and
“intrinsic” relations in Melin et al. (2010), respectively. Here,
L500 is the X-ray luminosity measured within r500, which is
calculated from LX . While we do not have the conversion factors
they used, a typical magnitude of the conversion factors is about
10%, according to Melin et al. (2010). A 10% change in LX
gives a 2% change in r500, which is negligible compared to the
other uncertainties; thus, we shall assume that LX and L500 are
the same, and repeat our analysis using these scaling relations.
We find the amplitudes of a = 0.78 ± 0.09 and 0.69 ± 0.08
(zmax = 0.2; 68% CL) for the relations 1 and 2, respectively;
thus, while these scaling relations give larger amplitudes, they
cannot completely explain the difference between the results of
Melin et al. (2010; a 
 1) and our results. However, we find that
the discrepancy is much less for high X-ray luminosity clusters;
see Section 7.6.

While the method of Melin et al. (2010) and our method are
similar, they are different in details. We compare the predicted
angular radial profiles of the SZ effect to the WMAP data to
find the best-fitting amplitude. Melin et al. (2010) measured
the integrated pressure within five times r500, and converted
it to the integrated pressure within r500, Yr500, assuming the
distribution of pressure beyond r500 is described by the profile
of Arnaud et al. (2010). Whether the difference in methodology
can account for the difference between our results and their
results is unclear, and requires further investigation.39

39 There are also differences in the estimators used. In Melin et al. (2010), a
“matched-filter estimator” proposed by Herranz et al. (2002) was used for
estimating the normalization of the Arnaud et al. profile. Their estimator is
essentially the same as the optimal estimator we derive in Appendix C, with
some differences in details of the implementation. Their estimator is given by,
in our notation,

p̂ = 1

F

∫
d2lt̃ν′ l(P

−1)ν′ l,νld̃νl, (82)

where

F ≡
∫

d2lt̃ν′ l(P
−1)ν′ l,νl t̃νl. (83)

In any case, we emphasize once again that the SZ effect
measured by the WMAP and the predictions from X-ray data
agree well, when the actual X-ray profile of individual clusters,
rather than the average (or median) profile, is used, and there is a
reason why Arnaud et al.’s profile would overpredict the pressure
(i.e., cooling flows; see Section 7.3). Therefore, it is likely that
the difference between our results and Melin et al. (2010) simply
points to the fundamental limitation of the analysis using many
clusters (with little or no X-ray data) and scaling relations.

7.5.5. Results: KS Profile and Hydrodynamical Simulation

Let us turn our attention to the analytical KS profile. For the
KS profile with the concentration parameter of Seljak (2000),
we find the best-fitting amplitudes of a = 0.59 ± 0.09 and
0.46 ± 0.06+0.31

−0.18 (68% CL) for zmax = 0.1 and 0.2, respectively.
For the KS profile with the concentration parameter of Duffy
et al. (2008), we find a = 0.67 ± 0.09 and 0.58 ± 0.07+0.33

−0.20
(68% CL) for zmax = 0.1 and 0.2, respectively. These results
are consistent with those for Arnaud et al.’s pressure profiles.

Recently, the SPT Collaboration detected the SZ power
spectrum at l � 3000. By fitting their SZ power spectrum
data to the theoretical model of Komatsu & Seljak (2002), they
found the best-fitting amplitude of ASZ = 0.37±0.17 (68% CL;
Lueker et al. 2010). The calculation of Komatsu & Seljak (2002)
is based on the KS gas pressure profile. As the amplitude of SZ
power spectrum is proportional to the gas pressure squared,
i.e., ASZ ∝ a2, our result for the KS profiles, a ≈ 0.5–0.7, is
consistent with ASZ = 0.37 ± 0.17 found from SPT. The ACT
Collaboration placed an upper limit of ASZ < 1.63 (95% CL;
Fowler et al. 2010), which is consistent with the SPT result.

What do hydrodynamical simulations tell us? As the analyt-
ical calculations such as Komatsu & Seljak (2001) are limited,
we also fit the pressure profiles derived from hydrodynamical
simulations of Nagai et al. (2007) to the WMAP data. In the
bottom panels of Figure 17, we show the gas pressure profiles
from “Non-radiative” and “Cooling+Star Formation (SF)” runs.

By fitting the SZ templates constructed from these simulated
profiles to the WMAP data, we find the best-fitting amplitudes
of 0.50 ± 0.06+0.28

−0.18 and 0.67 ± 0.08+0.37
−0.23 (68% CL) for non-

radiative and cooling+SF runs, respectively, which are consis-
tent with the amplitudes found for the KS profiles and Arnaud
et al.’s profiles. See Table 13 for a summary of the best-fitting
amplitudes.

That the KS, simulation, and Arnaud et al.’s profiles yield
similar results indicates that all of these profiles overpredict the

Here, t̃ and d̃ are the two-dimensional Fourier transforms of a template map, t,
and the data map, d, respectively, and Pν′ l,νl is the power spectrum of the CMB
signal plus instrumental noise, both of which are assumed to be diagonal in
Fourier space. The summation over the repeated indices is understood. For
comparison, our estimator for the same quantity is given by

p̂ = 1

F
tν′p′

(
C−1

tot

)
ν′p′,νp

dνp, (84)

where Ctot = Npix + ASharmAT is the pixel-space covariance matrix of the
CMB signal plus instrumental noise (see Equation (C9)), and

F = tν′p′
(
C−1

tot

)
ν′p′,νp

tνp. (85)

There are two differences in the implementation: (1) Melin et al. (2010)
re-project the WMAP data onto 504 square (10◦ × 10◦) tangential overlapping
flat patches and calculate the above two-dimensional Fourier transform on
each flat patch. We perform the analysis on the full sky by calculating the
covariance matrix with the spherical harmonics. (2) Melin et al. (2010)
calculate P from the data. We calculate C from the best-fitting ΛCDM model
for the CMB signal and the noise model.
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Table 13
Best-fitting Amplitude of Gas Pressure Profilea

Gas Pressure Profile Type zmax = 0.1 zmax = 0.2 High LX
b Low LX

c

Arnaud et al. (2010) X-ray Obs. (Fid.)d 0.64 ± 0.09 0.59 ± 0.07+0.38
−0.23 0.67 ± 0.09 0.43 ± 0.12

Arnaud et al. (2010) REXCESS scalinge N/A 0.78 ± 0.09 0.90 ± 0.12 0.55 ± 0.16
Arnaud et al. (2010) Intrinsic scalingf N/A 0.69 ± 0.08 0.84 ± 0.11 0.46 ± 0.13
Arnaud et al. (2010) rout = 2r500

g N/A 0.59 ± 0.07 0.67 ± 0.09 0.43 ± 0.12
Arnaud et al. (2010) rout = r500

h N/A 0.65 ± 0.08 0.74 ± 0.09 0.44 ± 0.14
Komatsu & Seljak (2001) Equation (D16) 0.59 ± 0.09 0.46 ± 0.06+0.31

−0.18 0.49 ± 0.08 0.40 ± 0.11

Komatsu & Seljak (2001) Equation (D17) 0.67 ± 0.09 0.58 ± 0.07+0.33
−0.20 0.66 ± 0.09 0.43 ± 0.12

Nagai et al. (2007) Non-radiative N/A 0.50 ± 0.06+0.28
−0.18 0.60 ± 0.08 0.33 ± 0.10

Nagai et al. (2007) Cooling+SF N/A 0.67 ± 0.08+0.37
−0.23 0.79 ± 0.10 0.45 ± 0.14

Notes.
a The quoted error bars show 68% CL. The first error is statistical, while the second error is systematic. The systematic error is caused by the calibration error
in the size–luminosity relation (r500-LX relation; see Equation (81) and discussion below it). While we quote the systematic error in the amplitudes only for
zmax = 0.2, the amplitudes for zmax = 0.1 also have similar levels of the systematic error. Due to a potential contamination from unresolved radio sources,
the best-fitting amplitudes could also be underestimated by ≈5 to 10%. This is not included in the systematic error budget because it is sub-dominant. See
Section 7.7 for discussion on the point-source contamination.
b “High LX” uses clusters with 4.5 < LX/(1044ergs−1) < 45 and z � 0.2. Before masking, there are 82 clusters. The quoted errors are statistical.
c “Low LX” uses clusters with 0.45 < LX/(1044ergs−1) < 4.5 and z � 0.2. Before masking, there are 417 clusters. Clusters less luminous than these (129
clusters are fainter than 0.45 × 1044ergs−1) do not yield a statistically significant detection. The quoted errors are statistical.
d With the fiducial scaling relation between r500 and LX , r500 = 0.753h−1 Mpc

E(z) [LX/(1044 h−2 erg s−1)]0.228 (Böhringer et al. 2007). For this scaling relation,

LX = 4.5 × 1044ergs−1 corresponds to M500 = 4.1 and 3.9 × 1014 h−1 M� for z = 0.1 and 0.2, and LX = 0.45 × 1044ergs−1 corresponds to M500 = 0.84
and 0.80 × 1014 h−1 M� for z = 0.1 and 0.2, respectively.
e With the “REXCESS” scaling relation, r500 = 0.717h−1 Mpc

E1.19(z)
[LX/(1044 h−2 erg s−1)]0.222, used by Melin et al. (2010). For this scaling relation,

LX = 4.5 × 1044ergs−1 corresponds to M500 = 3.4 and 3.1 × 1014 h−1 M� for z = 0.1 and 0.2, and LX = 0.45 × 1044ergs−1 corresponds to M500 = 0.73
and 0.68 × 1014 h−1 M� for z = 0.1 and 0.2, respectively. The quoted errors are statistical.
f With the “intrinsic” scaling relation, r500 = 0.745 h−1 Mpc

E1.15(z)
[LX/(1044 h−2 erg s−1)]0.207, used by Melin et al. (2010). For this scaling relation,

LX = 4.5 × 1044ergs−1 corresponds to M500 = 3.7 and 3.4 × 1014 h−1 M� for z = 0.1 and 0.2, and LX = 0.45 × 1044ergs−1 corresponds to M500 = 0.88
and 0.82 × 1014 h−1 M� for z = 0.1 and 0.2, respectively. The quoted errors are statistical.
g The gas extension is truncated at rout = 2r500, instead of 6r500. The fiducial r500–LX relation is used. The quoted errors are statistical.
h The gas extension is truncated at rout = r500, instead of 6r500. The fiducial r500–LX relation is used. The quoted errors are statistical.

amount of SZ effect seen in the WMAP data by ∼30%–50%.
This conclusion is made robust by the results we presented
in Section 7.3: the analysis that does not use scaling relations
between LX and r500, but uses only a subset of clusters that have
the detailed follow-up observations by Chandra, yields the same
result. This is one of the main results of our SZ analysis.

7.6. Luminosity Bin analysis

To see the dependence of the best-fitting normalization
on X-ray luminosities (hence M500), we divide the clus-
ter samples into three luminosity bins: (1) “High LX” with
4.5 < LX/(1044ergs−1) � 45, (2) “Low LX” with 0.45 <
LX/(1044ergs−1) � 4.5, and (3) clusters fainter than (2). There
are 82, 417, and 129 clusters in (1), (2), and (3), respectively. In
Table 13, we show that we detect significant SZ signals in (1)
and (2), despite the smaller number of clusters used in each lu-
minosity bin. We do not have a statistically significant detection
in (3).

The high LX clusters have M � 4 × 1014 h−1 M�. For
these clusters, the agreement between the WMAP data and
the expected SZ signals is much better. In particular, for the
REXCESS scaling relation, we find a = 0.90 ± 0.12, which is
consistent with unity within the 1σ statistical error. This implies
that, at least for high X-ray luminosity clusters, our results and
the results of Melin et al. (2010) agree within the statistical
uncertainty.

On the other hand, we find that less luminous clusters tend to
have significantly lower best-fitting amplitudes for all models
of gas-pressure profiles and scaling relations that we have

explored. This trend is consistent with, for example, the gas
mass fraction being lower for lower mass clusters. It is also
consistent with radio point sources filling some of the SZ effect
seen in the WMAP data. For the point-source contamination, see
Section 7.7.

7.7. Systematic Errors

The best-fitting amplitudes may be shifted up and down by
≈50% due to the calibration error in the size–luminosity relation
(Equation (81)). As we have shown already, the best-fitting
amplitudes for the KS profiles can be shifted up to 0.77 and
0.91 for the concentration parameters of Seljak (2000) and Duffy
et al. (2008), respectively. Similarly, the amplitude for Arnaud
et al.’s profile can be shifted up to 0.97. As this calibration error
shifts all amplitudes given in Table 13 by the same amount, it
does not affect our conclusion that all of the gas pressure profiles
considered above yield similar results.

This type of systematic error can be reduced by using a subset
of clusters of galaxies for which the scaling relations are more
tightly constrained (see, e.g., Pratt et al. 2009; Vikhlinin et al.
2009a; Mantz et al. 2010a); however, reducing the number
of samples increases the statistical error. Indeed, the analysis
presented in Section 7.3 does not suffer from the ambiguity in
the scaling relations.

How important are radio point sources? While we have
not attempted to correct for potential contamination from
unresolved radio point sources, we estimate the magnitude of
effects here. If, on average, each cluster has an Fsrc = 10 mJy
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source, then the corresponding temperatures,

ΔTsrc = 40.34μK

[
sinh2(x/2)

x4

Fsrc

10mJy

10−5sr

Ωbeam

]
, (86)

are 2.24, 2.29, and 2.19 μK in Q, V, and W bands, respectively.
Here, x = ν/(56.78GHz), and Ωbeam = 9.0×10−5, 4.2×10−5,
and 2.1 × 10−5 sr are the solid angles of beams in Q, V, and W
bands, respectively (Jarosik et al. 2011). Using the radio sources
observed in clusters of galaxies by Lin et al. (2009), Diego
& Partridge (2010) estimated that the mean flux of sources
in Q band is 10.4 mJy, and that at 90 GHz (which is close
to 94 GHz of W band) is ≈4–6 mJy. Using these estimates,
we expect the source contamination at the level of ≈1–2 μK
in V and W bands, which is ≈5%–10% of the measured SZ
temperature. Therefore, the best-fitting amplitudes reported in
Table 13 could be underestimated by ≈5%–10%.

7.8. Discussion

The gas pressure profile is not the only factor that determines
the SZ power spectrum. The other important factor is the mass
function, dn/dM:

Cl ∝
∫

dz
dV

dz

∫
dM

dn

dM

∣∣P̃ 2d
l

∣∣2, (87)

where V (z) is the comoving volume of the universe and P̃ 2d
l is

the two-dimensional Fourier transform of P 2d(θ ). Therefore,
a lower-than-expected ASZ may imply either a lower-than-
expected amplitude of matter density fluctuations, i.e., σ8, or
a lower-than-expected gas pressure, or both.

As the predictions for the SZ power spectrum available today
(see, e.g., Shaw et al. 2009; Sehgal et al. 2010, and references
therein) are similar to the prediction of Komatsu & Seljak (2002)
(for example, Lueker et al. 2010 found ASZ = 0.55 ± 0.21 for
the prediction of Sehgal et al. 2010, which is based on the gas
model of Bode et al. 2009), a plausible explanation for a lower-
than-expected ASZ is a lower-than-expected gas pressure.

Arnaud et al. (2007) find that the X-ray observed integrated
pressure enclosed within r500, YX ≡ Mgas,500TX, for a given
M500 is about a factor of 0.75 times the prediction from the
Cooling+SF simulation of Nagai et al. (2007). This is in good
agreement with our corresponding result for the “High LX”
samples, 0.79 ± 0.10 (68% CL; statistical error only).

While the KS profile is generally in good agreement with
Arnaud et al.’s profile, the former is more extended than the latter
(see Figure 17), which makes the KS prediction for the projected
SZ profiles bigger. Note, however, that the outer slope of the
fitting formula given by Arnaud et al. (2010) (Equation (D3))
has been forced to match that from hydrodynamical simulations
of Nagai et al. (2007) in r � r500. See the bottom panels
of Figure 17. The steepness of the profile at r � r500 from
the simulation may be attributed to a significant non-thermal
pressure support from ρv2, which makes it possible to balance
gravity by less thermal pressure at larger radii. In other words,
the total pressure (i.e., thermal plus ρv2) profile would probably
be closer to the KS prediction, but the thermal pressure would
decline more rapidly than the total pressure would.

If the SZ effect seen in the WMAP data is less than theoreti-
cally expected, what would be the implications? One possibility
is that protons and electrons do not share the same tempera-
ture. The electron–proton equilibration time is longer than the
Hubble time at the virial radius, so that the electron temperature

may be lower than the proton temperature in the outer regions of
clusters which contribute a significant fraction of the predicted
SZ flux (Rudd & Nagai 2009; Wong & Sarazin 2009). The other
sources of non-thermal pressure support in outskirts of the clus-
ter (turbulence, magnetic field, and cosmic rays) would reduce
the thermal SZ effect relative to the expectation, if these effects
are not taken into account in modeling the intracluster medium.
Heat conduction may also play some role in suppressing the gas
pressure (Loeb 2002, 2007).

In order to explore the impact of gas pressure at r > r500, we
cut the pressure profile at rout = r500 (instead of 6r500) and repeat
the analysis. We find a = 0.74 ± 0.09 and 0.44 ± 0.14 for high
and low LX clusters, respectively. (We found a = 0.67 ± 0.09
and 0.43±0.12 for rout = 6r500. See Table 13.) These results are
somewhat puzzling—the X-ray observations directly measure
gas out to r500, and thus we would expect to find a ≈ 1 at least
out to r500. This result may suggest that, as we have shown in
Section 7.3, the problem is not with the outskirts of the cluster,
but with the inner parts where the cooling flow has the largest
effect.

The relative amplitudes between high and low LX clusters
suggest that a significant amount of pressure is missing in low-
mass (M500 � 4×1014 h−1 M�) clusters, even if we scale all the
results such that high-mass clusters are forced to have a = 1.
A similar trend is also seen in Figure 3 of Melin et al. (2010).
This interpretation is consistent with the SZ power spectrum
being lower than theoretically expected. The SPT measures
the SZ power spectrum at l � 3000. At such high multipoles,
the contributions to the SZ power spectrum are dominated by
relatively low-mass clusters, M500 � 4 × 1014 h−1 M� (see
Figure 6 of Komatsu & Seljak 2002). Therefore, a plausible
explanation for the lower-than-expected SZ power spectrum is
a missing pressure (relative to theory) in lower mass clusters.

Scaling relations, gas pressure, and entropy of low-mass clus-
ters and groups have been studied in the literature.40Leauthaud
et al. (2010) obtained a relation between LX of 206 X-ray-
selected galaxy groups and the mass (M200) derived from
the stacking analysis of weak lensing measurements. Con-
verting their best-fitting relation to r200–LX relation, we find
r200 = 1.26 h−1 Mpc

E0.89(z) [LX/(1044 h−2 erg s−1)]0.22. (Note that the
pivot luminosity of the original scaling relation is 2.6 ×
1042 h−2 erg s−1.) As r500 ≈ 0.65r200, their relation is ≈1σ
higher than the fiducial scaling relation that we adopted
(Equation (81)). Had we used their scaling relation, we would
find even lower normalizations.

The next generation of simulations or analytical calculations
of the SZ effect should be focused more on understanding the gas
pressure profiles, both the amplitude and the shape, especially in
low-mass clusters. New measurements of the SZ effect toward
many individual clusters with unprecedented sensitivity are now
becoming available (Staniszewski et al. 2009; Hincks et al.
2009; Plagge et al. 2010). These new measurements would
be important for understanding the gas pressure in low-mass
clusters.

8. CONCLUSION

With the WMAP seven-year temperature and polarization
data, new measurements of H0 (Riess et al. 2009), and improved
large-scale structure data (Percival et al. 2010), we have been

40 A systematic study of the thermodynamic properties of low-mass clusters
and groups is given in Finoguenov et al. (2007; also see Finoguenov et al.
2005a, 2005b).
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Figure 20. Two-dimensional joint marginalized constraint (68% and 95% CL)
on the primordial tilt, ns, and the tensor-to-scalar ratio, r, derived from the
data combination of WMAP+BAO+H0. The symbols show the predictions from
“chaotic” inflation models whose potential is given by V (φ) ∝ φα (Linde 1983),
with α = 4 (solid) and α = 2 (dashed) for single-field models, and α = 2 for
multi-axion field models with β = 1/2 (dotted; Easther & McAllister 2006).

able to rigorously test the standard cosmological model. The
model continues to be an exquisite fit to the existing data.
Depending on the parameters, we also use the other data
sets such as the small-scale CMB temperature power spectra
(Brown et al. 2009; Reichardt et al. 2009, for the primordial
helium abundance), the power spectrum of LRGs derived from
SDSS (Reid et al. 2010b, for neutrino properties), the Type Ia
supernova data (Hicken et al. 2009a, for dark energy), and the
time-delay distance to the lens system B1608+656 (Suyu et al.
2010, for dark energy and spatial curvature). The combined
data sets enable improved constraints over the WMAP-only
constraints on the cosmological parameters presented in Larson
et al. (2011) on physically motivated extensions of the standard
model.

We summarize the most significant findings from our analysis
(also see Tables 2–4):

1. Gravitational waves and primordial power spectrum.
Our best estimate of the spectral index of a power-law
primordial power spectrum of curvature perturbations is
ns = 0.968 ± 0.012 (68% CL). We find no evidence for
tensor modes: the 95% CL limit is r < 0.24.41 There is
no evidence for the running spectral index, dns/d ln k =
−0.022 ± 0.020 (68% CL). Given that the improvements on
ns, r, and dns/d ln k from the five-year results are modest,
their implications for models of inflation are similar to
those discussed in Section 3.3 of Komatsu et al. (2009a).
Also see Kinney et al. (2008), Peiris & Easther (2008) and
Finelli et al. (2010) for more recent surveys of implications
for inflation. In Figure 20, we compare the seven-year
WMAP+BAO+H0 limits on ns and r to the predictions from
inflation models with monomial potential, V (φ) ∝ φα .

2. Neutrino properties. Better determinations of the ampli-
tude of the third acoustic peak of the temperature power
spectrum and H0 have led to improved limits on the total
mass of neutrinos,

∑
mν < 0.58 eV (95% CL), and the ef-

fective number of neutrino species, Neff = 4.34+0.86
−0.88 (68%

CL), both of which are derived from WMAP+BAO+H0

41 This is the seven-year WMAP+BAO+H0 limit. The five-year
WMAP+BAO+SN limit was r < 0.22 (95% CL). For comparison, the
seven-year WMAP+BAO+SN limit is r < 0.20 (95% CL). These limits do not
include systematic errors in the supernova data.

without any information on the growth of structure. When
BAO is replaced by the LRG power spectrum, we find∑

mν < 0.44 eV (95% CL), and the effective number of
neutrino species, Neff = 4.25+0.76

−0.80 (68% CL).
3. Primordial helium abundance. By combining the WMAP

data with the small-scale CMB data, we have detected,
by more than 3σ , a change in the Silk damping on small
angular scales (l � 500) due to the effect of primordial
helium on the temperature power spectrum. We find Yp =
0.326 ± 0.075 (68% CL). The astrophysical measurements
of helium abundance in stars or H ii regions provide tight
upper limits on Yp, whereas the CMB data can be used
to provide a lower limit. With a conservative hard prior
on Yp < 0.3, we find 0.23 < Yp < 0.3 (68% CL). Our
detection of helium at z ∼ 1000 contradicts versions of
the “cold big bang model,” where most of the cosmological
helium is produced by the first generation of stars (Aguirre
2000).

4. Parity violation. The seven-year polarization data have
significantly improved over the five-year data. This has
led to a significantly improved limit on the rotation angle
of the polarization plane due to potential parity-violating
effects. Our best limit is Δα = −1.◦1 ± 1.◦4(statistical)
± 1.◦5(systematic) (68% CL).

5. Axion dark matter. The seven-year WMAP+BAO+H0
limit on the non-adiabatic perturbations that are uncorre-
lated with curvature perturbations, α0 < 0.077 (95% CL),
constrains the parameter space of axion dark matter in the
context of the misalignment scenario. It continues to sug-
gest that a future detection of tensor-to-scalar ratio, r, at the
level of r = 10−2 would require a fine-tuning of parameters
such as the misalignment angle, θ < 3 × 10−9, a signifi-
cant amount of entropy production between the QCD phase
transition and the BBN, γ < 0.9×10−9, a super-Planckian
axion decay constant, fa > 3 × 1032 GeV, an axion con-
tribution to the matter density of the universe being totally
sub-dominant, or a combination of all of the above with
less tuning in each (also see Section 3.6.3 of Komatsu et al.
2009a). The seven-year WMAP+BAO+H0 limit on corre-
lated isocurvature perturbations, which is relevant to the
curvaton dark matter, is α−1 < 0.0047 (95% CL).

6. Dark energy. With WMAP+BAO+H0 but without high-
redshift Type Ia supernovae, we find w = −1.10 ± 0.14
(68% CL) for a flat universe. Adding the supernova data
reduces the error bar by about a half. For a curved uni-
verse, addition of supernova data reduces the error in w
dramatically (by a factor of more than four), while the error
in curvature is well constrained by WMAP+BAO+H0. In
Figure 13, we show the seven-year limits on a time-
dependent equation of state in the form of w = w0 +wa(1−
a). We find w0 = −0.93 ± 0.13 and wa = −0.41+0.72

−0.71 (68%
CL) from WMAP+BAO+H0+SN. The data are consistent
with a flat universe dominated by a cosmological constant.

7. Primordial non-Gaussianity. The 95% CL limits on phys-
ically motivated primordial non-Gaussianity parameters
are −10 < f local

NL < 74, −214 < f
equil
NL < 266, and

−410 < f
orthog
NL < 6. When combined with the limit on

f local
NL from SDSS, −29 < f local

NL < 70 (Slosar et al. 2008),
we find −5 < f local

NL < 59. The data are consistent with
Gaussian primordial curvature perturbations.

8. Sunyaev–Zel’dovich effect. Using the optimal estimator,
we have measured the SZ effect toward clusters of galaxies.
We have detected the SZ effect toward the Coma cluster at
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3.6σ and made the statistical detection of the SZ effect by
optimally stacking the WMAP data at the locations of known
clusters of galaxies. By stacking 11 nearby massive clusters,
we detect the SZ effect at 6.5σ , and find that the measured
SZ signal and the predictions from the X-ray data agree
well. On the other hand, we find that the SZ signal from the
stacking analysis is about 0.5–0.7 times the predictions
from the current generation of analytical calculations,
hydrodynamical simulations, and the “universal pressure
profile” of Arnaud et al. (2010). We detect the expected
SZ signal in relaxed clusters that have cool cores. We
find that the SZ signal from non-relaxed clusters has SZ
signals that are 50% of the signal predicted by Arnaud
et al.’s profile. The discrepancy with theoretical predictions
presents a puzzle. This lower-than-theoretically-expected
SZ signal is consistent with the lower-than-theoretically-
expected SZ power spectrum recently measured by the SPT
Collaboration (Lueker et al. 2010). While we find a better
agreement between the WMAP data and the expectations for
massive clusters with M500 � 4×1014 h−1 M�, a significant
amount of pressure (relative to theory) is missing in lower
mass clusters. Our results imply that we may not fully
understand the gas pressure in low-mass clusters. This issue
would become particularly important when the SZ effect is
used as a cosmological probe.

We also reported a novel analysis of the WMAP tempera-
ture and polarization data that enable us to directly “see” the
imprint of adiabatic scalar fluctuations in the maps of po-
larization directions around temperature hot and cold spots.
These give a striking confirmation of our understanding of
the physics at the decoupling epoch in the form of radial and
tangential polarization patterns at two characteristic angular
scales that are important for the physics of acoustic oscillation:
the compression phase at θ = 2θA and the reversal phase at
θ = θA.

The CMB data have provided us with many stringent con-
straints on various properties of our universe. One of many
lessons that we have learned from the CMB data is that, given
the data that we have, inventions of new, physically motivated,
observables beyond the spherically averaged power spectrum
often lead to new insights into the physics of the universe. Well-
studied examples include primordial non-Gaussianity parame-
ters (fNL from the bispectrum), parity-violation angle (Δα from
the TB and EB correlations), modulated primordial power spec-
trum (g(k) from direction-dependent power spectra; Ackerman
et al. 2007; Hanson & Lewis 2009; Groeneboom et al. 2010, see
Bennett et al. 2011 for the seven-year limits).

The data continue to improve, including more integration of
the WMAP observations. At the same rate, it is important to
find more ways to subject the data to various properties of the
universe that have not been explored yet.
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APPENDIX A

EFFECTS OF THE IMPROVED RECOMBINATION
HISTORY ON THE ΛCDM PARAMETERS

The constraints on the cosmological parameters reported in
the original version of this paper were based on a version of
CAMB which used a recombination history calculated by the
RECFAST version 1.4.2 (Seager et al. 1999, 2000; Wong et al.
2008; Scott & Moss 2009). Shortly after the submission of the
original version, a new version CAMB was released with the
RECFAST version 1.5. This revision incorporates the improved
treatment of the hydrogen and helium recombination, following
numerous work done over the last several years (see Rubiño-
Martı́n et al. 2010, and references therein). Specifically, the
code multiplies the ionization fraction, xe(z), by a cosmology-
independent “fudge function,” f (z), found by Rubiño-Martı́n
et al. (2010). A change in the recombination history mostly
affects the time and duration of the photon decoupling which,
in turn, affects the amount of Silk damping. Therefore, it is
expected to affect the cosmological parameters such as ns and
Ωbh

2 (Rubiño-Martı́n et al. 2010).
In order to see the effects of the improved recombination code

on the cosmological parameters, we have re-run the ΛCDM
chain with the latest CAMB code that includes RECFAST
version 1.5. We find that the effects are small, and in most
cases negligible compared to the error bars; however, we find
that the significance at which ns = 1 is excluded is no longer
more than 3σ : with the improved recombination code, we find
ns = 0.968 ± 0.012 (68% CL), and ns = 1 is excluded at
99.5% CL.

Finally, the WMAP likelihood code has also changed from the
initial version (4.0), which used a temperature power spectrum
with a slightly incorrect estimate for the residual point-source
amplitude, and a TE power spectrum with a slightly incorrect
fsky factor. The new version (4.1) corrects both errors; however,
the change in the parameters is largely driven by the above
modification of the recombination history.

Throughout the main body of this paper, we have adopted the
new parameters for the simplest six-parameter ΛCDM model,
but we have kept the previous parameters for all the other models
because the changes are too small to report. We compare the
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Table 14
Comparison of the ΛCDM Parameters (WMAP+BAO+H0): RECFAST Version 1.4.2 Versus 1.5

Class Parameter ML (1.5) ML (1.4.2) Mean (1.5) Mean (1.4.2)

Primary 100Ωbh
2 2.253 2.246 2.255 ± 0.054 2.260 ± 0.053

Ωch
2 0.1122 0.1120 0.1126 ± 0.0036 0.1123 ± 0.0035

ΩΛ 0.728 0.728 0.725 ± 0.016 0.728+0.015
−0.016

ns 0.967 0.961 0.968 ± 0.012 0.963 ± 0.012
τ 0.085 0.087 0.088 ± 0.014 0.087 ± 0.014

Δ2
R(k0) 2.42 × 10−9 2.45 × 10−9 (2.430 ± 0.091) × 10−9 (2.441+0.088

−0.092) × 10−9

Derived σ8 0.810 0.807 0.816 ± 0.024 0.809 ± 0.024
H0 70.4km s−1 Mpc−1 70.2km s−1 Mpc−1 70.2 ± 1.4 km s−1/Mpc −1 70.4+1.3

−1.4 km s−1/Mpc−1

Ωb 0.0455 0.0455 0.0458 ± 0.0016 0.0456 ± 0.0016
Ωc 0.226 0.227 0.229 ± 0.015 0.227 ± 0.014

Ωmh2 0.1347 0.1344 0.1352 ± 0.0036 0.1349 ± 0.0036
zreion 10.3 10.5 10.6 ± 1.2 10.4 ± 1.2

t0 13.76 Gyr 13.78 Gyr 13.76 ± 0.11 Gyr 13.75 ± 0.11 Gyr

ΛCDM parameters derived from WMAP+BAO+H0 in Table 14.
See Larson et al. (2011) for the comparison of WMAP-only
parameters.

APPENDIX B

STACKED PROFILES OF TEMPERATURE
AND POLARIZATION OF THE CMB

B.1. Formulae of Stacked Profiles from Peak Theory

In order to calculate the stacked profiles of temperature and
polarization of the CMB at the locations of temperature peaks,
we need to relate the peak number density contrast, δpk, to the
underlying temperature fluctuation, ΔT .

One often encounters a similar problem in the large-scale
structure of the universe: how can we relate the number density
contrast of galaxies to the underlying matter density fluctuation?
It is often assumed that the number density contrast of peaks with
a given peak height ν is simply proportional to the underlying
density field. If one adopted such a linear and scale-independent
bias prescription, one would find42

δpk(n̂) = bνΔT (n̂). (B1)

However, our numerical simulations show that the linear bias
does not give an accurate description of 〈Qr〉 or 〈Tr〉. In fact,
breakdown of the linear bias is precisely what is expected
from the statistics of peaks. From detailed investigations of
the statistics of peaks, Desjacques (2008) found the following
scale-dependent bias:

δpk(n̂) = [
bν − bζ

(
∂2

1 + ∂2
2

)]
ΔT (n̂). (B2)

While the first, constant term bν has been known for a long
time (Kaiser 1984; Bardeen et al. 1986), the second term bζ has
been recognized only recently. The presence of bζ is expected
because, to define peaks, one needs to use the information on
the first and second derivatives of ΔT . As the first derivative
must vanish at the locations of peaks, the above equation does
not contain the first derivative.

Desjacques (2008) has derived the explicit forms of bν and
bζ :

bν = 1

σ0

ν − γ ū

1 − γ 2
, bζ = 1

σ2

ū − γ ν

1 − γ 2
, (B3)

42 For convenience, we write the bias parameters in units of (temperature)−1.

where ν ≡ ΔT/ σ0, γ ≡ σ 2
1 /( σ0 σ2), σj is the rms of jth

derivatives of the temperature fluctuation:

σ 2
j = 1

4π

∑
l

(2l + 1)[l(l + 1)]jCTT
l

(
WT

l

)2
, (B4)

and WT
l is the harmonic transform of a window function (which

is a combination of the experimental beam, pixel window, and
any other additional smoothing applied to the temperature data).
The quantity ū is called the “mean curvature,” and is given by
ū ≡ G1(γ, γ ν)/G0(γ, γ ν), where

Gn(γ, x∗) ≡
∫ ∞

0
dxxnf (x)

exp
[ − (x−x∗)2

2(1−γ 2)

]
√

2π (1 − γ 2)
. (B5)

While Desjacques (2008) applied this formalism to a three-
dimensional Gaussian random field, it is straightforward to
generalize his results to a two-dimensional case, for which f (x)
is given by (Bond & Efstathiou 1987),

f (x) = x2 − 1 + exp(−x2). (B6)

With the bias given by Equation (B2), we find

〈δpk(n̂)Qr (n̂ + θ̂ )〉 =
∫

d2l
(2π )2

WT
l WP

l (bν + bζ l
2)

× {
CTE

l cos[2(φ − ϕ)] + CTB
l sin[2(φ − ϕ)]

}
eil·θ , (B7)

〈δpk(n̂)Ur (n̂ + θ̂ )〉 = −
∫

d2l
(2π )2

WT
l WP

l (bν + bζ l
2)

× {
CTE

l sin[2(φ − ϕ)] − CTB
l cos[2(φ − ϕ)]

}
eil·θ , (B8)

where WT
l and WP

l are spherical harmonic transforms of the
smoothing functions applied to the temperature and polar-
ization data, respectively. Recalling l · θ = lθ cos(φ − ϕ),∫ 2π

0 dϕ sin[2(φ − ϕ)]eix cos(φ−ϕ) = 0, and

Jm(x) =
∫ 2π+α

α

dψ

2π
ei(mψ−x sin ψ), (B9)

with m = 2, ψ = ϕ − φ − π/2 and α = −φ − π/2, we find

〈δpk(n̂)Qr (n̂ + θ̂ )〉 = −
∫

ldl

2π
WT

l WP
l (bν + bζ l

2)CTE
l J2(lθ ),

(B10)
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〈δpk(n̂)Ur (n̂ + θ̂ )〉 = −
∫

ldl

2π
WT

l WP
l (bν + bζ l

2)CTB
l J2(lθ ).

(B11)

Using these results in Equations (9) and (10), we finally obtain
the desired formulae for the stacked polarization profiles:

〈Qr〉(θ ) = −
∫

ldl

2π
WT

l WP
l (bν + bζ l

2)CTE
l J2(lθ ), (B12)

〈Ur〉(θ ) = −
∫

ldl

2π
WT

l WP
l (bν + bζ l

2)CTB
l J2(lθ ). (B13)

Incidentally, the stacked profile of the temperature fluctuation
can also be calculated in a similar way:

〈T 〉(θ ) =
∫

ldl

2π

(
WT

l

)2
(bν + bζ l

2)CTT
l J0(lθ ). (B14)

B.2. A Cookbook for Computing 〈Qr〉(θ ) and 〈Ur〉(θ )

How can we evaluate Equations (B12)–(B14)? One may
follow the following steps:

1. Compute σ0, σ1, and σ2 from Equation (B4). For example,
the WMAP five-year best-fitting temperature power spec-
trum for a power-law ΛCDM model (Dunkley et al. 2009),43

multiplied by a Gaussian smoothing of 0.◦5 full-width-at-
half-maximum (FWHM) and the pixel window function
for the HEALPix resolution of Nside = 512, gives σ0 =
87.9μK, σ1 = 1.16 × 104μK, and σ2 = 2.89 × 106μK.

2. Compute γ = σ 2
1 /( σ0 σ2). For the above example, we find

γ = 0.5306.
3. As we need to integrate over peak heights ν, we need to

compute the functions G0(γ, γ ν) and G1(γ, γ ν) for var-
ious values of ν. The former function, G0(γ, γ ν), can
be found analytically (see Equation (A1.9) of Bond &
Efstathiou 1987). For G1, we need to integrate
Equation (B5) numerically.

4. Compute ū = G1/G0. For the above example, we find
ū = 1.596, 1.831, 3.206, and 5.579 for ν = 0, 1, 5, and 10,
respectively.

5. Choose a threshold peak height νt , and compute the mean
surface number density of peaks, n̄pk, from Equation (A1.9)
of Bond & Efstathiou (1987):

n̄pk(νt ) = σ 2
2

(2π )3/2(2 σ 2
1 )

∫
dνe−ν2/2G0(γ, γ ν). (B15)

The integration boundary is taken from νt to +∞ for temper-
ature hot spots, and from −∞ to −|νt| for temperature cold
spots. For the above example, we find 4πn̄pk = 15354.5,
8741.5, 2348.9, and 247.5 for νt = 0, 1, 2, and 3, respec-
tively.

6. Compute bν and bζ from Equation (B3) for various values
of ν.

7. Average bν and bζ over ν. We calculate the averaged bias
parameters, b̄ν and b̄ζ , by integrating bν and bζ multiplied
by the number density of peaks for a given ν. We then divide

43 We used the five-year best-fitting power spectrum to calculate the predicted
polarization pattern (before the seven-year parameter were obtained) and
compare it to the seven-year polarization data.

the integral by the mean number density of peaks, n̄pk, to
find

b̄ν = 1

n̄pk(νt )

σ 2
2

(2π )3/2
(
2 σ 2

1

) ∫ dνe−ν2/2G0(γ, γ ν)bν,

(B16)

b̄ζ = 1

n̄pk(νt )

σ 2
2

(2π )3/2
(
2 σ 2

1

) ∫ dνe−ν2/2G0(γ, γ ν)bζ .

(B17)

The integration boundary is taken from νt to +∞ for tem-
perature hot spots, and from −∞ to −|νt| for tempera-
ture cold spots. For the above example, we find (b̄ν, b̄ζ ) =
(3.289×10−3, 6.039×10−7), (1.018×10−2, 5.393×10−7),
(2.006 × 10−2, 4.569 × 10−7), and (3.128 × 10−2, 3.772 ×
10−7) for νt = 0, 1, 2, and 3, respectively (all in units of
μK−1). The larger the peak height is, the larger the linear
bias and the smaller the scale-dependent bias becomes.

8. Use b̄ν and b̄ζ in Equations (B12) and (B13) to compute
〈Qr〉(θ ) and 〈Ur〉(θ ) for a given set of CTE

l and CTB
l ,

respectively.

Very roughly speaking, the bias takes on the following values:

b̄(l) ≡ b̄ν + b̄ζ l
2

∼
⎧⎨
⎩

0.3
100 μK

[
1 +

(
l

75

)2]
(for νt = 0)

3
100 μK

[
1 +

(
l

290

)2]
(for νt = 3)

. (B18)

The scale dependence of bias becomes important at l ∼ 75 for
νt = 0, but the higher peaks are closer to having a linear bias
on large scales. One may also rewrite this using the stacked
temperature values at the center, 〈T 〉(0) = (107.0, 151.4, 216.4,
292.1)μK for νt = 0, 1, 2, and 3:

b̄(l) 
 (0.35, 1.5, 4.3, 9.1)

(107, 151, 216, 292)μK

[
1 +

(
l

(74, 137, 219, 288)

)2
]

.

(B19)

APPENDIX C

OPTIMAL ESTIMATOR FOR SZ STACKING

C.1. Optimal Estimator

In this appendix, we describe an optimal likelihood-based
method for estimating the stacked SZ profile around clusters
whose locations are taken from external catalogs.

Formally, we can set up the problem as follows. We represent
the WMAP data as a vector of length (Nchan ×Npix) and denote it
by dνp, where the index ν = 1, . . . , Nchan ranges over channels,
and the index p = 1, . . . , Npix ranges over sky pixels. (We
typically take Nchan = 6 corresponding to V1, V2, W1, W2,
W3, and W4; and Npix = 12(210)2 corresponding to a HEALPix
resolution of Nside = 1024.) We model the WMAP data as a sum
of CMB, noise, and SZ contributions as follows:

dνp =
∑
�m

Aνp,�ma�m + nνp +
Ntmpl∑
α=1

pα(tα)νp. (C1)

In this equation, we have written the SZ contribution as a sum
of Ntmpl template maps, t1, . . . , tNtmpl , whose coefficients pα
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are free parameters to be determined. The operator, Aνp,�m,
in Equation (C1) converts a harmonic-space CMB realization,
a�m, into a set of maps with black-body frequency dependence
and channel-dependent beam convolution. More formally, the
matrix element Aνp,�m is defined by

Aνp,�m = bν�Y�m(p), (C2)

where bν� is the beam transfer function (including HEALPix
window function) for channel ν.

The specific form of the template maps, tα , will depend on
the type of profile reconstruction which is desired. For example,
if we want to estimate a stacked amplitude for the SZ signal
in N angular bins, we define one template for each bin. If
the bin corresponds to angular range θmin � θ � θmax, we
define a map mp which is =1 if the angular distance θ between
pixel p and some galaxy cluster in the catalog is in the range
θmin � θ � θmax, and zero otherwise. We convolve this map with
the beam in each channel ν and multiply by the SZ frequency
dependence to obtain the template tνp. As another example, if we
want to fit for an overall multiple of a fiducial model mp for the
total SZ signal (summed over all clusters) then we define a single
(i.e., Ntmpl = 1) template tνp by applying beam convolution and
the SZ frequency dependence for each channel ν.

Given this setup, we would like to compute the likelihood
function L[pα|dνp] for the profile pα , given the noisy data dνp,
marginalizing over the CMB realization. We assume a fixed
fiducial model C� and represent the CMB signal covariance by
a (diagonal) matrix Sharm in harmonic space:

(Sharm)�m,�′m′ = C�δ��′δmm′ . (C3)

We represent the noise covariance by an (also diagonal) pixel-
matrix Nνp,ν ′p′ :

(Npix)νp,ν ′p′ = σ 2
νpδνν ′δpp′ . (C4)

The joint (CMB, SZ) likelihood function can now be written (up
to an overall normalizing constant) as

L[a, p|d] ∝ exp

[
− 1

2
aT S−1

harma − 1

2
(d − Aa − pαtα)T N−1

× (d − Aa − pαtα)

]
. (C5)

(In this equation we have omitted some indexes for notational
compactness, e.g., dνp → d and a�m → a. The summation over
α is assumed.) We can now integrate out the CMB realization a
to obtain the marginalized likelihood for the profile:

L[p|d] =
∫

Da L[a, p|d] (C6)

∝ exp

[
−1

2
(pα − p̂α)T Fαβ(pβ − p̂β)

]
, (C7)

where we have defined the (Ntmpl)-by-(Ntmpl) matrix

Fαβ = (tα)ν ′p′[Npix + ASharmAT ]−1
ν ′p′,νp(tβ)νp, (C8)

and the length-(Ntmpl) vector

p̂α = F−1
αβ (tβ)ν ′p′ [Npix + ASharmAT ]−1

ν ′p′,νpdνp. (C9)

The likelihood function L[p|d] in Equation (C7) has a simple
interpretation. The likelihood for pα is a Gaussian with mean
p̂α and covariance matrix F−1

αβ . This is the main result of this
section and is the basis for all our SZ results in the body of the
paper. For example, when we reconstruct the stacked SZ profile
in angular bins, the estimated profile in each bin α is given by
p̂α and the 1σ error is given by

√
(F−1)αα .

It is worth mentioning that the statistic p̂α also appears natu-
rally if we use an estimator framework rather than a likelihood
formalism. If we think of p̂α , defined by Equation (C9), as an
estimator for the profile given the data d, then one can verify that
the estimator is unbiased (i.e., 〈p̂α〉 = pα , where the expecta-
tion value is taken over random CMB + noise realizations with
a fixed SZ contribution) and its covariance is F−1

αβ . Conversely,
it is not hard to show that p̂α is the unbiased estimator with
minimum variance, thus obtaining p̂α in a different way. This
alternate derivation also shows that the error bars on the profile
obtained in our likelihood formalism are the same as would be
obtained in a direct Monte Carlo treatment.

Either from the likelihood or estimator formalism, one sees
that the statistic p̂α is optimal. In the limit where all frequency
channels are in the Rayleigh–Jeans regime, the statistic p̂α

corresponds to C−1-filtering the data and multiplying by each
template map. In this case, the C−1 filter acts as a high-pass filter
which optimally suppresses CMB power on scales larger than
the clusters, and also optimally weights the channels (in a way
which is �-dependent if the beams differ). When channels with
higher frequency are included, the statistic p̂α would get most
of its information from linear combinations of channels which
contain zero CMB signal, but nonzero response to an SZ signal.
(Such a combination of channels does not need to be high-pass
filtered, increasing its statistical weight.)

For the V + W combination in WMAP, the N−1-filtered (V −
W) null map is used to separate the SZ effect and CMB, as CMB
is canceled in this map while the SZ is effect not.

We conclude with a few comments on implementation.
Inspection of Equations (C8) and (C9) shows that it would be
straightforward to compute Fαβ and p̂α , given an algorithm for
multiplying a set of Nchan pixel space maps dνp by the operator
[Npix + ASharmAT ]−1. A fast multigrid-based algorithm for this
inverse problem was found in Smith et al. (2007) but there is
one small wrinkle in the implementation: in Smith et al. (2007)
the problem was formulated in harmonic space and an algorithm
was given for multiplying by the operator [S−1

harm + AT N−1
pix A]−1.

However, the matrix identity

[Npix + ASharmAT ]−1 = N−1
pix − A

[
S−1

harm + AT N−1
pix A

]−1
AT ,
(C10)

allows us to relate the two inverse problems. In fact, there is
another advantage to using the expression on the right-hand
side of Equation (C10): because the inverse noise, N−1

pix , appears
instead of the noise covariance Npix, a galactic mask can be
straightforwardly included in the analysis by zeroing the matrix
entries of N−1

pix which correspond to masked pixels, so that the
pixels are treated as infinitely noisy.

APPENDIX D

PRESSURE PROFILES

D.1. Pressure Profile from X-ray Observations

Recently, Arnaud et al. (2010) found that the following pa-
rameterized phenomenological electron pressure profile, which
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is based on a “generalized Navarro–Frenk–White profile” pro-
posed by Nagai et al. (2007), fits the electron pressure pro-
files directly derived from X-ray data of clusters well (see
Equation (13) of Arnaud et al. 2010):

Pe(r) = 1.65(h/0.7)2eVcm−3

× E8/3(z)

[
M500

3 × 1014(0.7/h)M�

]2/3+αp

p(r/r500), (D1)

where αp = 0.12, E(z) ≡ H (z)/H0 = [Ωm(1 + z)3 + ΩΛ]1/2

for a ΛCDM model, r500 is the radius within which the mean
overdensity is 500 times the critical density of the universe,
ρc(z) = 2.775 × 1011E2(z)h2M� Mpc−3, and M500 is the mass
enclosed within r500:

M500 ≡ 4π

3
[500ρc(z)]r3

500. (D2)

The function p(x) is defined by

p(x) ≡ 8.403(0.7/h)3/2

(c500x)γ [1 + (c500x)α](β−γ )/α
, (D3)

where c500 = 1.177, α = 1.051, β = 5.4905, and γ = 0.3081.
The SPT Collaboration stacked the SZ maps of 11 known

clusters and fitted the stacked SZ radial profile to the above
form, finding c500 = 1.0, α = 1.0, β = 5.5, and γ = 0.5
(Plagge et al. 2010). While they did not compare the overall
amplitude (which is the focus of our analysis), the shape of the
pressure profile found by the SPT Collaboration (using the SZ
data) is in an excellent agreement with that found by Arnaud
et al. (2010, using the X-ray data).

D.2. Pressure Profile from Hydrostatic Equilibrium

The KS profile builds on and extends the idea originally put
forward by Makino et al. (1998) and Suto et al. (1998): (1) gas
is in hydrostatic equilibrium with gravitational potential given
by an NFW dark matter density profile (Navarro et al. 1997) and
(2) the equation of state of gas is given by a polytropic form,
P ∝ ργ . However, this model still contains two free parameters:
a polytropic index γ and the normalization of P. Komatsu &
Seljak (2001) found that an additional, physically reasonable
assumption that (3) the slope of the gas density profile and
that of the dark matter density profile agree at around the
virial radius, uniquely fixes γ , leaving only one free parameter:
the normalization of P. These assumptions are supported by
hydrodynamical simulations of clusters of galaxies, and the
resulting shape of the KS profile indeed agrees with simulations
reasonably well (see, however, Section 7.8 for a discussion on
the shape of the profile in the outer parts of clusters).

Determining the normalization of the KS profile requires
an additional assumption, described below. Also note that this
model does not take into account any non-thermal pressure (such
as ρv2 where v is the bulk or turbulent velocity), gas cooling,
or star formation (see, e.g., Bode et al. 2009; Frederiksen et al.
2009, and references therein for various attempts to incorporate
more gas physics).

The KS gas pressure profile is given by (see Section 3.3 of
Komatsu & Seljak 2002, for more detailed descriptions)

Pgas(r) = Pgas(0)[ygas(r/rs)]
γ . (D4)

The electron pressure profile, Pe, is then given by Pe =
[(2 + 2X)/(3 + 5X)]Pgas = 0.518Pgas for X = 0.76. Here, rs

is the so-called scale radius of the NFW profile, and a function
ygas(x) is defined by

ygas(x) ≡
{

1 − B

[
1 − ln(1 + x)

x

]}1/(γ−1)

, (D5)

with

B ≡ 3η−1(0)
γ − 1

γ

[
ln(1 + c)

c
− 1

1 + c

]−1

, (D6)

γ = 1.137 + 8.94 × 10−2 ln(c/5) − 3.68 × 10−3(c − 5), (D7)

and

η(0) = 2.235 + 0.202(c − 5) − 1.16 × 10−3(c − 5)2. (D8)

Here, c is the so-called concentration parameter of the NFW
profile, which is related to the scale radius, rs, via c = rvir/rs,
and rvir is the virial radius. The virial radius gives the virial
mass, Mvir, as

Mvir = 4π

3
[Δc(z)ρc(z)]r3

vir. (D9)

Here, Δc(z) depends on Ωm and ΩΛ as (Bryan & Norman 1998)

Δc(z) = 18π2 + 82[Ω(z) − 1] − 39[Ω(z) − 1]2, (D10)

where Ω(z) = Ωm(1 + z)3/E2(z) (also see Lacey & Cole
1993; Nakamura & Suto 1997, for other fitting formulae). For
Ωm = 0.277, one finds Δc(0) 
 98.

The central gas pressure, Pgas(0), is given by

Pgas(0) = 55.0h2eVcm−3

[
ρgas(0)

1014h2M� Mpc−3

] [
kBTgas(0)

8keV

]
,

(D11)
where kB is the Boltzmann constant. The central gas tempera-
ture, Tgas(0), is given by

kBTgas(0) = 8.80 keVη(0)

[
Mvir/(1015 h−1 M�)

rvir/(1 h−1 Mpc)

]
. (D12)

The central gas density, ρgas(0), will be determined such that
the gas density at the virial radius is the cosmic mean baryon
fraction, Ωb/Ωm, times the dark matter density at the same
radius. This is an assumption. In fact, the cosmic mean merely
provides an upper limit on the baryon fraction of clusters, and
thus we expect the gas pressure to be less than what is given
here. How much less needs to be determined from observations
(or possibly from more detailed modeling of the intracluster
medium). In any case, with this assumption, we find

ρgas(0) = 7.96 × 1013h2M� Mpc−3

×
(

Ωb

Ωm

)
Mvir/(1015h−1M�)

[rvir/(1 h−1 Mpc)]3

× c2

(1 + c)2

1

ygas(c)

[
ln(1 + c) − c

1 + c

]−1
. (D13)

This equation fixes a typo in Equation (21) of Komatsu & Seljak
(2002).

The virial radius, rvir, is approximately given by 2r500; thus,
Mvir is approximately given by 8Δc/500 
 1.6. However, the
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exact relation depends on the mass (see, e.g., Figure 1 of
Komatsu & Seljak 2001). We calculate the mass within a given
radius, r, by integrating the NFW density profile (Navarro et al.
1997):

ρNFW(r) = ρs

(r/rs)(1 + r/rs)2
. (D14)

Specifically, for a given M500 and r500, we solve the following
nonlinear equation for Mvir:

Mvir
m(cr500/rvir)

m(c)
= M500, (D15)

where m(x) ≡ ln(1 + x) − x/(1 + x). Here, rvir is related to
Mvir via Equation (D9). We also need a relation between the
concentration parameter, c, and Mvir. Komatsu & Seljak (2002)
used

cseljak = 10

1 + z

(
Mvir

3.42 × 1012 h−1 M�

)−0.2

= 5.09

1 + z

(
Mvir

1014 h−1 M�

)−0.2

, (D16)

which was adopted from Seljak (2000).
Recently, Duffy et al. (2008) ran large N-body simulations

with the WMAP five-year cosmological parameters to find a
more accurate fitting formula for the concentration parameter:

cduffy = 7.85

(1 + z)0.71

(
Mvir

2 × 1012 h−1 M�

)−0.081

= 5.72

(1 + z)0.71

(
Mvir

1014 h−1 M�

)−0.081

. (D17)

This formula makes clusters of galaxies (M� � 1014M�) more
concentrated than cseljak would predict.
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Böhringer, H., et al. 2004, A&A, 425, 367
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