TYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "https://www.w3.org/TR/html4/loose.dtd"> LAMBDA - Archeops Windows Functions Details

Archeops Windows Functions v1

The data made available through this page has been updated. The most recent version of this data may be accessed through: Archeops 2005 Product Table

Download Links:

These two files contain the window functions (in ASCII and FITS versions) for the Archeops power spectrum bins. The integral of the window functions are normalized to 1 for each of the 16 bins and are computed between l=0 and l=768. The table contains a float array with dimension 16 x 769 (16 columns by 769 rows). The window functions are defined as follows (with implicit sum over repeated indices):

\begin{displaymath}\mathcal{C}_b=W_\ell^b \left[ \frac{\ell(\ell+1)}{2\pi}C_\ell \right]\end{displaymath}
(1)

In the MASTER framework (Hivon et al., 2002), if we define $\mathcal{M}$ as

\begin{displaymath}\mathcal{M}_{\ell^\prime \ell^{\prime\prime}}=M_{\ell^\prime......\prime\prime}}F_{\ell^{\prime\prime}}B_{\ell^{\prime\prime}}^2\end{displaymath}
(2)

Then the window function reads:

\begin{displaymath}W_\ell^b=\frac{2\pi}{\ell(\ell+1)}\left(P^b_{\ell^\prime}\ma......rime\prime\prime}}\mathcal{M}_{\ell^{\prime\prime\prime} \ell}\end{displaymath}
(3)

Where $P$ and $Q$ are the binning and reciprocal operators.

Using this definition, we have for each bin $b$:

\begin{displaymath}\sum_\ell W_\ell^b=1\end{displaymath}
(4)

Jean-Christophe Hamilton & Simon Prunet - Nov 05, 2002


Back To old 2002 Archeops Products Page

A service of the HEASARC and of the Astrophysics Science Division at NASA/GSFC

HEASARC Director: Dr. Andrew F. Ptak

LAMBDA Director: Dr. Thomas M. Essinger-Hileman

NASA Official: Dr. Thomas M. Essinger-Hileman

Web Curator: Mr. Michael R. Greason